forum@abinit.org
Subject: The ABINIT Users Mailing List ( CLOSED )
List archive
- From: "Corsin Battaglia" <corsin.battaglia@freesurf.ch>
 - To: <forum@abinit.org>
 - Subject: fuzzy phonon bandstructure
 - Date: Thu, 4 Mar 2004 22:09:29 +0100
 
| 
 Dear abinit users 
Well, I do not really have obtained a 
bandstructure for the phonons yet. 
But I am trying to calculate the phonon dispersion 
of the metallic compound 1T-NbTe2. Since it is metallic, I am just using the 
phonon type perturbation and neglecting the electric field type 
perturbation. 
My input file is based on test t26.in (phonon 
bandstructure of Al) and the infos given in the respfn-help file. 
There are several problems: 
1) I get 6 accoustic phonon modes at 
q=0. 
2) The RF-SCF cycles do not converge (tolvrs* 
1.0d-10) (dataset 5). 
3) I can not get rid of the feeling that I am 
calculating to many q-points and that their might be a much more economic way to 
get the bandstructure exploiting the DDB with the help of ifc=anaddb. In 
the header of the t26.in file it says that 6 dynamical matrices are needed for 
the computation of the full phonon bandstructure of Al. There are as well six different q-vector for which an RF calculation is 
performed. 
Does this also mean that I will get 6 DDB's which I 
have to merge and from which I can compute the eigenfrequencies using 
anaddb? 
How to decide which q-vectors must be included in 
the DDB? 
Horacio W. Leite Alves, in response to Kwan-Woo 
Lee's mail, mentions that only the gamma-point DDB is needed. Does this also 
apply to my case? Then why do we need the DDB 
merge tool? 
Are the eigenenergies I get from abinit the 
same as the one from anaddb (without imposing the accoustic sum 
rule)? 
My input file is attached. Thanks in advance for 
your help.  
Corsin 
P.S.: The electronic bandstructure is great now!!! 
 
My input file: 
******************************************************************** 
# NbTe2 phonon band structure 
ndtset 13  nbdbuf 2 
#Input that is common to most datasets, but not all 
getden 1 getwfk 2 kptopt 3 nqpt 1 #Dataset 1 : SCF  
  getden1  0 
getwfk1 0 kptopt1 1 nqpt1 0 prtden1 1 iscf1 5 tolvrs1 1.0d-13 #Dataset 2 : non-SCF for all k points   getwfk2  1 
iscf2 -2 nqpt2 0 tolwfr2 1.0d-22 #Dataset 3 : RF at q=0 0 0 
kptopt3 2 iscf3 3 qpt3 0 0 0 rfatpol3 1 3 rfdir3 1 1 1 rfphon3 1 tolvrs3 1.0d-10 #Dataset 4 : non-SCF at q=1/16 0 0 
    iscf4 -2 
qpt4 1/16 0.0 0.0 tolwfr4 1.0d-22 #Dataset 5 : RF at q=1/16 0 0 
getwfq5 4 iscf5 3 qpt5 1/16 0.0 0.0 rfatpol5 1 3 rfdir5 1 1 1 rfphon5 1 tolvrs5 1.0d-10 #Dataset 6 : non-SCF at q=1/8 0 0 
    iscf6 -2 
qpt6 1/8 0.0 0.0 tolwfr6 1.0d-22 #Dataset 7 : RF at q=1/8 0 0 
  getwfq7  6 
iscf7 3 qpt7 1/8 0.0 0.0 rfatpol7 1 3 rfdir7 1 1 1 rfphon7 1 tolvrs7 1.0d-10 #Dataset 8 : non-SCF at q=3/16 0 0 
    iscf8 -2 
qpt8 3/16 0.0 0.0 tolwfr8 1.0d-22 #Dataset 9 : RF at q=3/16 0 0 
  getwfq9  8 
iscf9 3 qpt9 3/16 0.0 0.0 rfatpol9 1 3 rfdir9 1 1 1 rfphon9 1 tolvrs9 1.0d-10 #Dataset 10 : non-SCF at q=1/4 0 0 
    iscf10 -2 
qpt10 1/4 0.0 0.0 tolwfr10 1.0d-22 #Dataset 11 : RF at q=1/4 0 0 
  getwfq11  10 
iscf11 3 qpt11 1/4 0.0 0.0 rfatpol11 1 3 rfdir11 1 1 1 rfphon11 1 tolvrs11 1.0d-10 #Dataset 12 : non-SCF at q=5/16 0 0 
    iscf12 -2 
qpt12 5/16 0.0 0.0 tolwfr12 1.0d-22 #Dataset 13 : RF at q=5/16 0 0 
  getwfq13  12 
iscf13 3 qpt13 5/16 0.0 0.0 rfatpol13 1 3 rfdir13 1 1 1 rfphon13 1 tolvrs13 1.0d-10 #Dataset 14 : non-SCF at q=3/8 0 0 
    iscf14 -2 
qpt14 3/8 0.0 0.0 tolwfr14 1.0d-22 #Dataset 7 : RF at q=3/8 0 0 
  getwfq15  14 
iscf15 3 qpt15 3/8 0.0 0.0 rfatpol15 1 3 rfdir15 1 1 1 rfphon15 1 tolvrs15 1.0d-10 #Dataset 16 : non-SCF at q=7/16 0 0 
    iscf16 -2 
qpt16 7/16 0.0 0.0 tolwfr16 1.0d-22 #Dataset 17 : RF at q=7/16 0 0 
  getwfq17  16 
iscf17 3 qpt17 7/16 0.0 0.0 rfatpol17 1 3 rfdir17 1 1 1 rfphon17 1 tolvrs17 1.0d-10 #Dataset 18 : non-SCF at q=1/2 0 0 
    iscf18 -2 
qpt18 1/2 0.0 0.0 tolwfr18 1.0d-22 #Dataset 19 : RF at q=1/2 0 0 
  getwfq19  18 
iscf19 3 qpt19 1/2 0.0 0.0 rfatpol19 1 3 rfdir19 1 1 1 rfphon19 1 tolvrs19 1.0d-10 #Common data 
#Definition of the unit cell 
acell 3.68 3.68 6.61 angstrom #rprim 0.866 -0.500 0.000 # It is better to define # 0.000 1.000 0.000 # the primitive vectors # 0.000 0.000 1.000 # using rprim angdeg 90 90 120 #Definition of the atom types 
ntypat 2 # There are two type of atoms znucl 41 52 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. #Definition of the atoms natom 3 # There are three atoms natrd 2 # Reads two atoms typat 1 2 # type 1 is Nb, type 2 is Te xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/3 2/3 1/4 # Triplet giving the REDUCED coordinate of atom 2. # Note the use of fractions (remember the limited # interpreter capabilities of ABINIT) spgroup 164       # Spacegroup 
#Definition of the occupation numbers 
occopt 4 tsmear 0.01 #Read psp 
npsp 2 # Read 2 psp files ixc 1 # Nb is of type ixc 1. Te is of type ixc 1. # LDA. Nb contains semicores. #Definition of the planewave basis set 
ecut 10.0 # Maximal kinetic energy cut-off, in Hartree ngkpt 8 8 4       # Creates a 8x8x4 k-point 
grid 
#Definition of the SCF procedure 
nstep 250 # Maximal number of SCF cycles #diemac 12.0      # For metals, we use the default 
10^6. 
nband 35 # nband=nb of electrons in unit cell/2+(20% for metals) # more bands are needed with semicore states  | 
- fuzzy phonon bandstructure, Corsin Battaglia, 03/04/2004
- Re: [abinit-forum] fuzzy phonon bandstructure, verstraete, 03/05/2004
- Re: [abinit-forum] fuzzy phonon bandstructure, Corsin Battaglia, 03/05/2004
- Re: [abinit-forum] fuzzy phonon bandstructure, verstraete, 03/05/2004
 
 
 - Re: [abinit-forum] fuzzy phonon bandstructure, Corsin Battaglia, 03/05/2004
 
 - Re: [abinit-forum] fuzzy phonon bandstructure, verstraete, 03/05/2004
 
Archive powered by MHonArc 2.6.16.