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Abstract

The density functional theory (DFT) computation of electronic structure, total energy and other properties of ma-

terials, is a field in constant progress. In order to stay at the forefront of knowledge, a DFT software project can benefit

enormously from widespread collaboration, if handled properly. Also, modern software engineering concepts can

considerably ease its development. The ABINIT project relies upon these ideas: freedom of sources, reliability, porta-

bility, and self-documentation are emphasised, in the development of a sophisticated plane-wave pseudopotential code.

We describe ABINITv3.0, distributed under the GNU General Public License. The list of ABINITv3.0 capabilities is

presented, as well as the different software techniques that have been used until now: PERL scripts and CPP directives

treat a unique set of FORTRAN90 source files to generate sequential (or parallel) object code for many different

platforms; more than 200 automated tests secure existing capabilities; strict coding rules are followed; the documentation

is extensive, including online help files, tutorials, and HTML-formatted sources.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The first-principles computation of material

properties, relying upon quantum mechanics and

electromagnetism, has undergone tremendous

progress in the past twenty years. The widespread

density functional theory (DFT) [1,2] is at the

heart of this rapid evolution. It has been imple-
mented in different computer codes, as well as

generalised (e.g. time-dependent DFT [3]), or used

as a basis for more sophisticated formalisms.
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Without being comprehensive, let us mention a

few of the milestones in this field since the mid-

eighties, in view of showing its continuous growth,

with a special focus on the use of pseudopotentials.

In 1985, Car and Parrinello proposed an algo-

rithm [4] that unified DFT with molecular dy-
namics. Independently, the same year, the so-called

‘‘GW’’ approximation of Hedin [5] for computing

one-electron addition or removal energies, was

implemented by Hybertsen and Louie [6]. In 1987,

the linear-response approach to the dynamical and

dielectric properties of solids was implemented by

Baroni et al. [7], while Allan and Teter [8] proposed

to use separable (Kleinman–Bylander) [9] pseudo-
potentials in conjunction with the Car–Parrinello

technique. Vanderbilt designed ultrasoft pseudo-

potentials in 1990 [10], and three years later, to-

gether with King-Smith, identified the electronic

polarisation as a geometric phase [11]. At about the

same time, implementations on massively parallel

computers appeared [12]. Further elaboration on

the pseudopotential concept lead to Bl€oochl�s pro-
jector augmented waves method [13]. In order to

tackle excited states, both time-dependent DTF

[14,15] and the Bethe–Salpeter equation formalism

[16–18] were recently implemented.

Thus, in order to stay up-to-date, computer

programs for first-principles study of materials

must include more and more functionalities, that

progressively become considered as ‘‘basic’’ func-
tionalities. It is obviously not efficient anymore to

test a new idea on the basis of a computer code

that would have been developed from scratch for

that purpose. Furthermore, a single individual

cannot keep up with the maintenance and devel-

opment of a software in which more and more

functionalities must be incorporated, without sac-

rificing his own research. It is also clear that
improvements or generalisations of the DFT for-

malism, and/or its implementation, and/or its

domain of application, will continue for the next

decade or even longer. Group development is re-

quired, and even international collaboration. In

this context, different modern software engineering

techniques prove extremely useful.

The ABINIT software project was started in
1997, on this basis, as an open software project,

without a ‘‘definite’’ goal, developed using several

software engineering techniques to allow inter-

national collaboration of many different groups.

The main program of the ABINIT package per-

forms density functional calculations of material

properties, using a plane-wave basis and pseudo-

potentials. Special functionalities deal efficiently
with response functions.

At present, this software is (1) open source

(available under the GNU General Public License

[19]), (2) self-testing, (3) portable across platforms

for serial and parallel execution, (4) self-docu-

mented. A self-learning procedure is provided to

the user. A protocol for international group de-

velopment has been set up, including an explicitly
stated coding style. The web site [20] provides the

official versions, pseudopotentials, different utili-

ties, benchmarking results, mailing lists and biblio-

graphical information.

In the present paper, we refer to the specific

version 3.0 of ABINIT. Previous versions of the

package were not provided under GNU GPL, and

the web site access was restricted.
The main program in ABINIT, as well as some

utilities, are written in FORTRAN90 (more than

300 routines, about 100 000 lines, roughly a third

of which are comment lines). The package also

includes documentation files, scripts for automatic

testing, pseudopotential files.

ABINITv3.0 was released first in December

2000. Since then, bug fixes have been regularly
reported and posted on the web (currently version

3.0.6). On the other hand, the mainstream of de-

velopment is continuing beyond version 3.0, with

the existing versions 3.1 to 3.4. The present au-

thors of this paper have made major contributions

to ABINITv3.0, although more than 50 individu-

als have contributed to it, usually through modi-

fications of one or a small number of routines, or
through bug fixes.

Many other codes based on plane waves and

pseudopotentials or projector-augmented waves

codes (the latter considered as an improvement of

the ultrasoft pseudopotential formalism) are avail-

able today. The list that we provide here [21–31], is

likely not exhaustive. Some of them are commer-

cialised, some others are available through collab-
oration with the main development team, or

available without restriction from the web.
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In the future, it might be interesting to develop

some collaboration with the development teams

that provide their code under the GNU General

Public License, (that provide legal protection of

the rights of both developers and users [21–23]), or

the teams that provide their code freely [24–26].
Collaborative work might involve cross-checking

of accuracy and speed, as well as sharing of rou-

tines or libraries. Obviously, open source devel-

opment will be essential in this respect.

In this article, we will first focus on the capa-

bilities of ABINITv3.0 (Section 2). Some of them

are basic features, which have been used in similar

codes for a long time, and will not be explained in
much detail. Others are features of which we know

no other implementation, and will be the subject

of a longer explanation, although a complete de-

scription should be published elsewhere. We will

also briefly present the structure of the package

and the organisation of input files. Then, in Sec-

tion 3, we will describe the organisation of the

worldwide group development, made possible
thanks to modern software engineering concepts:

self-testing, scripts for portability, self-documen-

tation, user self-learning. In the final Section 4, we

will critically discuss the present achievements and

the development model that we have followed, and

indicate possible improvements.

2. Features

The ABINIT package includes different pro-

grams: the main ABINIT program, and the utili-
ties MERGE, IFC and CUT3D. The main

ABINIT program is a driver for different density

functional based calculations. In what follows,

we will distinguish (i) electronic ground-state

capabilities, (ii) structure-related capabilities (op-

timisation and molecular dynamics), and (iii) re-

sponse-function capabilities. References to the

adequate publications are provided, with only
a brief description, for most of the features.

However, in two cases, namely, the treatment

of the spin–orbit (SO) interaction and the adia-

batic-connection fluctuation dissipation theorem

(ACFDT), the ABINIT implementation is state-

of-the-art, and more explanation will be given. The

utilities MERGE, IFC and CUT3D will be de-

scribed in a separate section.

2.1. Electronic ground-state capabilities

The pseudopotential plane-wave technique for

density functional calculations has been reviewed

by Payne et al. [33].

In ABINITv3.0, the following density func-

tional approximations are supported: the local

(spin-)density approximations of Perdew–Zunger

[34], Teter and co-workers [35], the generalised

gradient approximation (GGA) of Perdew et al.
[36], the GGA potentials of van Leeuwen–Baer-

ends [37], as well as the older non-spin-polarised

local density approximations (LDA) of Gunnars-

son–Lundqvist [38], Wigner [39], and Slater (X-

alpha) [40].

The pseudopotentials that ABINIT is able to

use, in separable form [9], are of many different

types:

• standard norm-conserving pseudopotentials on

a numerical grid, such as (but not limited to)

Troullier–Martins pseudopotentials [41];

• Goedecker et al. [35] or Hartwigsen et al. [42]

pseudopotentials, whose analytical form is par-

ticularly compact;

• extended norm-conserving pseudopotentials, as
proposed by Teter [43].

On the web site, two complete (or nearly com-

plete) sets of LDA pseudopotentials are provided:

one of the Troullier–Martins type, and one of the

Hartwigsen–Goedecker–Hutter type. The Fritz–

Haber-Institute code [44] can be used to generate

new pseudopotentials, in particular those to be
used within the GGA. The Hartwigsen–Goedec-

ker–Hutter pseudopotentials have a spin–orbital

part, while the latest version of the Martins

pseudopotential code [45] can also be used to gen-

erate SO dependent pseudopotentials. Non-linear

exchange-correlation core corrections, as proposed

by Louie et al. [46] or Teter [43] can be treated.

Finally, core-hole pseudopotentials, needed to
study core-level chemical shifts [47] can also be

used.
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The wavefunctions at each k-point (wavevector

in the reciprocal space, usually in the first Brillouin

Zone) are represented by the numerical coeffi-

cients of a finite set of plane waves, determined

by a kinetic energy cut-off. The k-point sets can

be generated automatically, following the Monk-
horst–Pack scheme [48], or a generalisation there-

of. The production of electronic band structure is

made easy thanks to the possibility of automati-

cally generating k-points that are regularly spaced

along different lines in reciprocal space.

Symmetries are used to decrease the number of

k-points needed to sample the Brillouin zone, so

that only the irreducible part of it must be sam-
pled.

Different possibilities are offered for the wave-

function representation in reciprocal space (plane-

wave coefficients). In the most frequent case,

the wavefunction coefficients are complex valued

wavefunctions, scalar in spinor space. However,

ABINITv3.0 can treat collinear magnetism (ferro-

magnetism and anti-ferromagnetism), using in-
dependent spin up and spin down wavefunctions,

as well as the SO coupling, using spinor wave-

functions. The ability to treat SO coupling is a

rather advanced feature of ABINIT, and will be

described in a separate section. In ABINITv3.0,

the ability to treat non-collinear magnetism is still

missing. For the specific wavevectors invariant

under time-reversal (and translation by a vector of
the reciprocal lattice), e.g. (0 0 0) or (1/2 0 0) . . ., the
wavefunction is represented on the adequate

halved set of plane-wave coefficients.

The algorithm that determines the wavefunc-

tions, in a trial effective potential, is an adaptation

of the conjugate-gradient algorithm of Teter et al.

[49]. The density is constructed from these wave-

functions, and processed to find the Hartree and
exchange-correlation part of the potential. In this

way, an input trial potential is associated to an

output potential. Different algorithms allow to it-

eratively build trial potentials that converge to-

wards the Kohn–Sham potential (fixed point

where the input and output potentials are identi-

cal): simple mixing [50], the Anderson algorithm

[51], and the potential-based conjugate gradient
algorithm [52,53]. Preconditioning of these algo-

rithms is achieved through a model dielectric

function, or through an approximate dielectric

matrix [54].

When the density has been built self-consis-

tently, the corresponding potential can be used non-

self-consistently, to generate unoccupied states

(needed for the generation of band structure or for
the ACFD formalism, see Section 2.5).

The treatment of state-dependent occupation

numbers can be done in a number of ways: these

can be set up by hand (collectively for each band,

or individually for each spin, k-point or band

number), or filled automatically. In the latter case,

the user can choose between semiconductor filling,

or metallic filling, according to different smearing
schemes: gaussian smearing (Fu and Ho [55]),

Hermite–Gauss smearing (Methfessel and Paxton

[56]), cold smearing (Marzari [57]).

2.2. Structure-related capabilities

Different choices of symmetry specification are

provided. Given the atomic positions in the unit
cell, the symmetry operations that leave them in-

variant are automatically recognised. Conversely,

given the symmetry operations, and the list of ir-

reducible atoms, the remaining atoms in the unit

cell can be automatically generated.

It is also possible to input the number of the

space group, according to the international tables

for crystallographic [58], in which case the list of
symmetry operations is initialised thanks to a

database. Given the lattice parameters and sym-

metry operations, ABINIT is able to find the

Bravais lattice and the point symmetry group (not

yet the space group in ABINITv3.0).

The computation of forces and stresses, thanks

to the Hellmann–Feynman theorem or the stress

theorem within DFT [59,60], is implemented in all
the cases in which the total energy can be com-

puted, except in the SO case (i.e., it is available

for scalar wavefunctions as well as spin-polarised

ones, metallic as well as insulating materials, and

for the different exchange-correlation functionals).

Forces and stresses can be used either to gen-

erate an optimised structure (minimising the forces

and stresses, optionally constraining some of their
components), using the Broyden algorithm [61],

the modified Broyden algorithm [62], the Verlet

X. Gonze et al. / Computational Materials Science 25 (2002) 478–492 481



algorithm with sudden atomic stop when the ion

moves against the force [63], or to generate mo-

lecular dynamics trajectories, using the Verlet al-

gorithm [64] or Numerov algorithm [65]. In the

case of Verlet algorithm, it is possible to sample

the canonical ensemble using the Nos�ee–Hoover
and Langevin thermostat [66–70].

The code provides an automatic analysis of

bond lengths and angles, as well as the atomic

coordinates in xyz format.

2.3. Response-function capabilities

We first consider responses to atomic displace-
ments and static homogeneous electric fields.

The dielectric polarisation can be computed

within the Berry phase formulation [11]. This

feature is available for insulators, magnetic or

non-magnetic, but not yet when SO splitting is

present.

The linear-response technique (or density

functional perturbation theory) [7,71–74] can be
used to compute responses to atomic displace-

ments and homogeneous electric fields. This pro-

duces dynamical matrices at selected wavevectors,

the Born effective charges, or the (electronic) di-

electric constant. These quantities are gathered in

a database, that can be analysed by the MERGE

and IFC codes (see later). In ABINITv3.0, linear

responses are not yet available for the spin-polar-
ised case, or for spinor wavefunctions, or for the

GGA to the exchange-correlation functional.

Susceptibility matrices and dielectric matrices

(at zero frequency, and for reciprocal space lattice

vectors) are computed thanks to the sum over

states formulation [77,78].

Electronic excitations can also be investigated,

within the time-dependent DFT [14,15].

2.4. Spin–orbit coupling

The SO coupling is not often available in plane-

wave pseudopotential codes. Its implementation in

ABINITv3.2, where forces, stresses and response

functions are available, will be the subject of a

detailed presentation [79]. We present here a brief
description of the implementation of total energy

calculations in ABINITv3.0.

Starting from the Dirac equation, it is possible

to obtain a Schr€oodinger-like equation mixing the

great and small component of the relativistic

wavefunction, valid to the order 1=c2 (see [80]).

A pseudopotential can then be generated for each

channel lþ 1
2
and l� 1

2
An adequate linear com-

bination of these pseudopotentials leads to a scalar

relativistic (SR) part vSRi and to a SO part vSOl .

Following Refs. [42,81], we combine again these

pseudopotentials, and write the electron–ion po-

tential as the sum of a SR term and of a SO term

such as:

Vei ¼
X
l

V SR
l ðr; r0Þjlsihlsj þ

X
l

V SO
l ðr; r0ÞL 
Sjlsihlsj:

ð1Þ

Each term of the V SR
l ðr; r0Þ or V SO

l ðr; r0Þ kind is cast

in a factored form of the Kleinman–Bylander type,

the extension to more than one projector being
straightforward.

The standard plane-wave basis is extended to

the spinor plane-wave basis, whose elements are

two-component plane waves denoted by hG; rj. A
generic matrix element takes the form:

hG; rjV SR
l jl; sihl; sjG0; r0i ð2Þ

for the spin independent part, and

hG; rjV SO
l L 
 Sjl; sihl; sjG0; r0i ð3Þ

for the SO part. The result for the spin-indepen-

dent term, in the Kleinman–Bylander formulation,

is well known:

hG; rjV SR
l jl; sihl; sjG0; r0i

¼ 4pð2lþ 1ÞflðjGjÞflðjG0jÞPlðbGG 
 bGG0Þ; ð4Þ

where bGG ¼ �G=jGj, flðGÞ is the Kleinman–
Bylander form factor in the reciprocal space, and

Pl the Legendre polynomials. This results from the

addition theorem:

hGjl; sihl; sjG0i ¼
X
m

hGjY �
lmYlmjG

0i

¼ ð2lþ 1Þ
4p

PlðbGG 
 bGG0Þ: ð5Þ

To achieve an analogous formula for the SO

term, we first consider the vector LjG0i. Using the
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definition, L ¼ r� p, and the identities rjGi ¼
�irGjGi and pjGi ¼ GjGi, we obtain: LjG0i ¼
�iG0 � rG0 jG0i. We therefore transform the ma-

trix element into

�ihrjSjr0i 
G0 � rG0 hGjV SO
l jl; sihl; sjG0i: ð6Þ

The computation of the last term mimics the

computation of the spin-independent term. Noting

that the rG0 jG0j terms do not contribute, due to
the cross product with G0, we finally obtain:

hG; rjV SO
l L 
 Sjl; sihl; sjG0; r0i

¼ �4pið2lþ 1ÞhrjSjr0i 
G�G0P 0
l

�ðbGG 
 bGG0ÞflðjGjÞflðG0jÞ; ð7Þ

where P 0
l is the first derivative of Pl.

From these formulae, the total energy of the

system can be computed, as well as its derivatives

with respect to atomic displacements and unit cell

deformations to obtain forces and stresses.

2.5. Adiabatic-connection fluctuation dissipation

theorem

The LDA and GGA within DFT often yield a

usefully accurate description of the physical and

chemical behavior of solids, surfaces, and mole-

cules. In particular, they can give a realistic ac-

count of the atomic structure as well as elastic and

vibrational properties. Regarding molecular in-

teractions and the related potential energy sur-
faces, GGA�s typically improve over the LDA, but

yet more accurate functionals are needed to over-

come critical limitations: GGA�s still fail to predict

the energetics of chemical reactions (molecular

dissociation energies, heats of reaction, and acti-

vation energy barriers) with ‘‘chemical accuracy’’,

and, like the LDA, do not properly include van der

Waals interactions between distant subsystems.
The ACFDT allows one to generate fully non-

local exchange-correlation functionals that in-

clude, for instance, the van der Waals interaction

or exact non-local exchange, and thus go beyond

traditional local-density or gradient corrected ap-

proximations. Explicitly, the exchange-correlation

energy for an electronic system with density nðrÞ is
given by [82]

EXC½n� ¼
1

2

Z 1

0

dk
Z

d3rd3 r0
e2

jr� r0j

�
�
� �h

p

Z 1

0

duvkðr; r0; iuÞ � nðrÞdðr� r0Þ
�
;

ð8Þ

where vkðr; r0; ðiuÞÞ is the (imaginary-frequency)
dynamical density response function of the system

with the electrons interacting by a scaled Coulomb

potential ke2=jr� r0j and moving in a modified

external potential such that the density stays the

same as for the physical (k ¼ 1) groundstate. For

k ¼ 0, one deals with the non-interacting Kohn–

Sham system; its response function is given ex-

plicitly by the Kohn–Sham eigenstates /krðrÞ and
eigenvalues ekr as

v0ðr; r0; iuÞ ¼
X
r;k;l

ðckr � clrÞ
i�hu� ðelr � ekrÞ

/�
krðrÞ/lrðrÞ

� /�
lrr

0/krðr0Þ; ð9Þ

where the sum includes all occupied (ckr ¼ 1) and

unoccupied (ckr ¼ 0) states. For k > 0, the inter-

acting and the Kohn–Sham response functions are

related by a Dyson-type screening equation

vkðr; r0; iuÞ ¼ v0ðr; r0; iuÞ þ
Z

d3r1d
3r2v0ðr; r1; iuÞ

� fHXC
k ðr1; r2; iuÞvkðr2; r0; iuÞ; ð10Þ

where fHXC
k ðr; r0; iuÞ ¼ ke2=jr� r0j þ f XC

k ðr; r0; iuÞ is

the Coulomb and exchange-correlation kernel,

established in the context of time-dependent DFT

[83]. The correlation part of EXC and the exchange

part can be separated as shown in Ref. [84]. The

set of Eqs. (8)–(10) may be referred to as ACFDT

formalism. In principle, it yields the exact den-
sity functional exchange-correlation energy. In

practice, different approximate functional can be

generated from different approximations to the

dynamical density response function: by using

specific approximations for the (unknown) time-

dependent exchange-correlation kernel, the Kohn–

Sham response function, and/or the solution of the

Dyson equation.
In ABINITv3.0 [85], the initial Kohn–Sham

groundstate [and thus v0ðr; r0; iuÞ] is calculated

within the LDA or the GGA. The response
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functions and kernels are considered at the C-point

and treated in the plane-wave representation defined,

e.g. for v0GG0 ðiuÞ, by v0ðr; r0; iuÞ ¼
P

G;G0 v0GG0 ðiuÞ�
eiGre�iG0r0 , where G is a reciprocal lattice vector. We

obtain the Kohn–Sham response function thanks

to the sum over states in Eq. (9). Using different
time-dependent exchange-correlation kernels [85]

we then solve the Dyson Eq. (10) without further

approximations as the system of linear equationsX
G1 ;G2

n
dGG1

:� v0GG2
ðiuÞfHXC

kG2G1
ðiuÞ

o
vkG1G

0 ðiuÞ ¼ v0GG0 ðiuÞ:

ð11Þ
To obtain EXC we evaluate the correlation energy

as

EC ¼
Z 1

0

dk
�h
2p

Z 1

0

du
X
G

4pe2

G2
fv0GGðiuÞ � vkGGðiuÞg:

ð12Þ
The exchange energy functional is then added

[86–88]. For the integration over k and u, we re-

petitively solve the Eqs. (9) and (11) and use

Gaussian quadrature formulas.

This implementation is still at an experimental
stage: it needs optimisation. The primary goal of

our research is to assess the accuracy of different

functionals of the ACFDT family.

2.6. Parallelisation

We have implemented different levels of par-

allelisation: distribution of k-points on different
processors, distribution of the work related to

different states within a given k-point, distribution

of the work related to different wavefunctions co-

efficients. There is still room for optimisation of

these different levels, so that it will not be the

purpose of this section to present a detailed ana-

lysis of the speed-up, only the main ideas behind

the parallelisation.
The most efficient parallelisation (large amount

of computation with respect to the communica-

tions) is based on the distribution of k-points. It is

implemented using the MPI library, and is avail-

able in all cases (electronic structure, total energy

determination, response functions) where there is

more than one k-point. It works for massively

parallel or SMP machines, as well as for clusters

with network-based communications. Unfortu-

nately, the scaling of the number of k-points with

the size of the unit cell is unfavourable: it decreases

with increasing number of atoms. Still, there are

many cases in which both the workload and the

number of k-points is large (e.g. for metals, or for
the response-function properties of small cells). As

an example, a typical speed-up of 20 can be at-

tained with 25 processors on a SGI Origin 2000

(processors R12K, 300 MHz), while on a cluster of

25 Intel Pentium III under Linux (550 MHz),

ethernet 100 Mbits/s, the speed-up is still above 15.

The spread of the work related to different states

within a given k-point is implemented only for the
case of the response functions in ABINITv3.0. As

with the distribution of k-points, it is implemented

using the MPI library, and works for massively

parallel or SMP machines, as well as for clusters

with network-based communications. Its scaling is

linear with the size of the system, and counter-

balances the unfavourable scaling of the k-point

spread: the product of the number of k-points by
the number of states is roughly constant, for similar

systems treated with similar accuracy, and typically

vary between 200 and more than 1000. The amount

of communication between processors, for re-

sponse-function calculations, is only marginally

larger for this state-based parallelisation than for

the k-point distribution. However, in ABINITv3.0,

the memory need per processor is not decreased by
adding more processors.

Finally, it is also possible to distribute the work

related to the coefficients of the wavefunctions

over the processors of an SMP machine, thanks to

OpenMP compiler directives. The FFT algorithm

has been parallelised by this technique, as well as

the application of the non-local operator to the

wavefunction. However, this implementation is the
most recent of the three parallelisations, and is far

from being efficient: a typical speed-up of 2 has

been observed using four processors. Interestingly,

the MPI and OpenMP parallelisation can be used

at the same time.

2.7. Utilities

The MERGE and IFC utilities are used to an-

alyse the database of derivatives of the total energy
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with respect to atomic displacements and homo-

geneous electric field perturbations, produced by

the main ABINIT program. This database can

contain dynamical matrices and Born effective

charges, as well as the electronic dielectric tensor.

MERGE is a database handling tool, while the
analysis is performed with IFC.

From these data, following Ref. [74], IFC can

build:

(1) the interatomic force constants, including their

asymptotic behaviour, based on Born effective

charge tensors and the electronic dielectric ten-

sor;
(2) the dynamical matrices at any point in the

Brillouin zone, by Fourier interpolation of

the dynamical matrices provided in the data-

base, and thus the corresponding eigenvec-

tors and eigenvalues, the latter forming the

phonon band structure;

(3) symmetry characters of the phonons at zero

wavevector;
(4) thermodynamical properties (such as free en-

ergy, heat capacity and entropy), in the quasi-

harmonic approximation, obtained by the

integration of the phonon degrees of freedom

over the Brillouin zone, with Bose–Einstein

occupation factors;

(5) the frequency-dependent dielectric tensor, for

frequencies lower than the electronic gap.

The CUT3D utility performs the analysis of the

real-space three-dimensional density or potential

files provided by the main ABINIT program. In

particular, it is able to interpolate the value of the

density or potential known in a three-dimensional

arbitrary cartesian volume, on a two-dimensional

plane that cuts the three-dimensional cell, along a
line, or at any single point. It is also able to re-

format the density or potential file for use as input

to graphical softwares like MATLAB [75] or

MOLEKEL [76].

3. Organisation of the software development

As mentioned in the introduction, the ABINIT

project relies upon a large number of developers,

belonging to different international teams. Soft-

ware engineering techniques have been developed

by computer scientists in order to allow the har-

monious development of such projects. Some of

them involve auxiliary software (usually available

under the GNU General Public License), others
are mostly concepts that guide the development

effort. Several of these techniques have been

adopted in the ABINIT project, and will be de-

scribed here. Some others are not yet used, and

will be part of Section 4.

3.1. Sharing the software: GNU General Public

License

The GNU organisation has put forward the

important concept of ‘‘free software’’: the software

is copyrighted by the developers, but distributed

under a license that guarantees the right of users to

have access to the sources, the right to modify them

and even the right to redistribute them. This con-

cept has been further elaborated to give legal texts
(available on the GNU web site [19]). The so-called

‘‘GNU General Public License’’ [32] is used for the

vast majority of free softwares available today.

We have chosen to deliver ABINIT under this

license. Each source file or documentation file in

the ABINIT package bears the copyright of its

author(s), as well as the distribution license.

Thanks to this approach, the developers retain the
acknowledgement of their effort, while allowing

others to improve their work in future releases.

The user is guaranteed to have access to the source

code, and can actually contribute to the debugging

effort.

3.2. Automatic tests

Modifications performed by some developer

might introduce bugs. This obvious source of

problems in code development is further amplified

when a large group is involved: most developers

only know a restricted part of the code, while the

level of care of the developers can vary widely. In

order to avoid this drawback, self-testing has been

implemented.
As an integral part of the ABINIT package,

more than two hundred tests are delivered. The
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testing environment includes one input file per test,

the pseudopotentials, and scripts for running bat-

ches of tests and analysing their results automati-

cally. For each functionality of ABINIT, there

exists one (or more) such test, created during the

implementation. On average, each of these tests
runs in a dozen seconds on a PC (Pentium III at

800 MHz).

The ultimate goal of the automatic testing en-

vironment is to provide to the developer a (one-

bit) positive signal when everything is fine, and an

adequate failure analysis (more than one bit, of

course) otherwise. In ABINITv3.0, the analysis is

multi-level:

(1) A first script, called ‘‘fldiff’’ (for ‘‘floating-

diff’’), written in PERL, is able to compute

the difference between a resulting file and a ref-

erence file, in such a way that floating point

inaccuracies, inherent to the variability of plat-

forms and computers, are ignored to within

some bound. This tool requires the resulting
and reference files to be rather similar, except

for the floating point differences. When the test

is successful, only a few lines are written in a

summary file, that gathers the results of the

batch of tests done automatically.

(2) When a non-negligible difference is obtai-

ned, the result of a usual UNIX ‘‘diff’’ com-

mand is available automatically. This allows
for easy examination of more complex differ-

ences.

(3) For each run of ABINIT, there is also a de-

tailed ‘‘log’’ file, usually ignored in production

runs, in which error, warning, and comment

messages are delivered.

Every contributor to the ABINIT effort is re-
quired to set up a test when making his develop-

ment effort. The modified source files, the input file

and the reference file for the tests are included in

the next version of ABINIT. The delivery of the

reference file by the developer to the person in

charge of the official version is essential, and al-

lows one to insure that the new functionality is

indeed safe.
Most of the tests are suited for the sequential

and OpenMP versions of ABINIT. A separate set

of tests focuses on the comparison of the sequen-

tial and MPI-parallel execution.

Finally, there is also a small class of tests that

do not examine the functionalities of ABINIT, but

benchmark the speed: they compare different ver-

sions of the most CPU-critical routines and allow
the user to compare machine speeds.

3.3. Portability

ABINITv3.0 has been installed on the following

platforms:

(1) PC, based on Pentium Pro, Pentium II, and
Pentium III processors, under Linux, with

the PGI compiler (Portland Group Inc.), as

well as the Fujitsu compiler;

(2) PC, based on Intel 486 and Pentium II under

Windows 98 or NT, using the PGI worksta-

tion suite;

(3) Compaq, based on alpha processors (EV56,

EV6 or EV67), under OSF;
(4) Compaq, based on alpha processors (EV56),

under LINUX;

(5) IBM RS6000, based on Power 2 and 3þ pro-

cessors (model 590, 3CT, nighthawk);

(6) SGI Origin 2000, based on R1000 processors;

(7) CRAY T3E;

(8) FUJITSU VPP700;

(9) Sun UltraSparc II;
(10) NEC SX4 and SX5;

(11) HITACHI SR8000;

(12) Macintosh.

The optimisation of the main code is quite ad-

vanced for the platforms (1)–(7), and could be

better for the other platforms. Binaries for most of

these machines, contributed by different develop-
ers, are provided on the ABINIT web site.

The large number of platforms on which ABI-

NIT has been installed has been made possible

thanks to the use of cpp directives, coupled with

MAKE files and/or different scripts. The unique

set of ABINIT source files is preprocessed on-the-

fly at compilation time, and generates machine-

dependent code. As a result, ABINIT can work
under UNIX-type OS, as well as under Windows

and MacOS.
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For each platform on which ABINIT has been

installed, one machine-dependent file had to be

prepared, containing the compiler name, options,

and selected information needed for preprocessing

(about 15 lines). These machine-dependent files

depend weakly on the ABINIT version: once such
a file has been set up for a platform, further in-

stallation on the same platform is quite simple.

The same software techniques are used to

maintain the sequential and parallel versions of

ABINIT, both produced from the preprocessing of

a unique set of source files.

The MPI version of ABINIT has been tested

(and used for production work) on clusters of
SMP nodes of all the above-mentioned platforms

working under UNIX-like OS, except Sun Ult-

raSparc II. The OpenMP version of ABINIT has

been tested on the following SMP machines: SGI

Origin 2000, IBM RS6000 44P with Power 3þ
processors (4 processors per node), and Compaq/

DEC ES40 EV67 (4 processors per node).

3.4. Portability of automatic tests

The interplay between portability and auto-

matic testing raises interesting problems. As men-

tioned in Section 3.2, the analysis of the result files

involves comparison with reference files. These

reference files are produced by runs on one specific

platform. Although the automatic analysis tool
‘‘fldiff� is able to place a tolerance level on the

floating point results (in this analysis, two floating

point numbers are considered identical if they

differ by less than 1.0e�12), which is sufficient to

eliminate most of the platform variability, addi-

tional care in designing the tests of the ABINIT

output was needed. Without it, a large fraction of

the test cases would generate output files con-
taining extensive platform-dependent sections, in-

appropriate for automatic analysis.

A first cause of largely different numerical re-

sults comes from the diagonalisation of matrices.

Supposing some eigenvalues are degenerate, the

corresponding eigenvectors can be chosen arbi-

trarily within the degenerate vector subspace. Even

in the non-degenerate case, the phase of the wave-
vectors is undefined. Most of the computed prop-

erties (e.g. charge density, total energy) do not

depend upon the particular choice of vectors or

phases. However, this is not always true. Indeed,

we are interested in:

(1) the output and visualisation of the atomic ei-

gendisplacements generated by diagonalising
the dynamical matrix;

(2) the initialisation of electronic wavefunctions

(in order to help the convergence) from wave-

functions generated in (slightly) different geo-

metries, often more symmetric.

In these two cases, specific sections of the out-

put file might be completely different due to the
choice of a phase or equivalent linear combina-

tions of vectors, precluding any reasonably simple

automatic analysis.

The ABINITv3.0 remedy to this first problem

involves first (routine fxphas.f), fixing the phase

of the eigenvectors, by maximising the (phase-

dependent) sum of the square of their real parts,

then choosing the sign of the first non-zero ele-
ment to be positive, and second (routines phfrq.f

and mkkin.f), slightly breaking the symmetry of

the dynamical and kinetic energy matrices, at the

level of one part per 1.0el2.

A second cause of portability problems comes

from algorithms used in intrinsically unstable re-

gimes. As an example, the optimisation of the

interatomic distance based on the Broyden algo-
rithm [61] involves the (implicit) inversion of the

Hessian matrix. If one starts the optimisation of

the distance between two atoms in a molecule in

the region where the second derivative of the in-

teratomic potential nearly vanishes, very small

platform-dependent differences will be amplified,

so that floating point results do not stay within the

required tolerance.
The remedy to this second problem, set up in

ABINITv3.0, is to design our test cases so as to

avoid these regions, and if this proves impossible,

to make the algorithm stop after only one or two

iterations, when the results have not yet diverged

on different machines.

A third cause of portability problems comes

from sorting real numbers. Suppose that in a list of
mostly unequal numbers, two numbers are equal. If

this situation is not appropriately taken care of, the

X. Gonze et al. / Computational Materials Science 25 (2002) 478–492 487



sorting algorithm might sort them in a systematic

way, but that could vary on different platforms.

The physical realisations of this problem en-

countered in ABINITv3.0 are:

(1) producing a list of neighbouring atoms or-
dered by their distance with respect to some

atom (symmetries often give atoms at the same

distance), routines bonds.f and rsiaf9.f;

(2) producing a list of k-points ordered with re-

spect to their magnitude (in order to fold to

the irreducible Brillouin zone efficiently), rou-

tine listkk.f;

(3) finding the point of highest or lowest density,
for printing purposes, routine prtrhomxmn.f.

The remedy to this third problem is to allow

the algorithm to recognise that two numbers are

equal, within a given tolerance, and to retain the

ordering of the original list (before sorting) for

these two numbers.

A fourth cause of portability problems is not
directly related to physics. Suppose that some

floating point number must be printed. If it is

truncated at a precision less than the tolerance of

our automatic analysis tool (e.g. using the f8.2

FORTRAN write format), depending on the

closeness of the number to certain pivot, the

rounding might vary on different machines.

The remedy to this fourth problem, would be
to apply machine-independent rounding functions

before printing the numbers. However, we have

not yet applied it in ABINITv3.0.

Even after having solved these four problems,

there are still a few test cases in which the floating

point numbers differ by more than the selected tol-

erance in the result and reference files. These test

cases usually involve response function calcula-
tions, in which the small lack of portability of the

preliminary ground-state calculation are amplified

by the subsequent response-function calculation.

The observation of this lack of portability does not

mean that some bug has been introduced. However

some (human) knowledge of the meaning of the

different sections of the output file is needed to assess

the presence or the absence of abnormal behaviour.
Despite this remaining lack of portability, the

examination of the summary produced by the

automatic analysis tool for a complete set of tests

takes at worst 2 or 3 min.

3.5. Self-documentation

The software concept of self-documentation is
often mentioned when one speaks about main-

taining large scientific codes, such as ABINIT. Let

us first note that the documentation about one

routine should be local to the routine, or accessible

through a link local to the routine, in order to allow

the maintenance of these routines by developers

without global knowledge of the whole package.

This idea is implemented in the ‘‘literate program-
ming’’ approach [89]. Self-documentation tools

allow developers to interlace program documenta-

tion with source codes, without having to maintain

two separate documents. Users can grasp the whole

structure of a the code in an automated manner:

global documentation is generated from local doc-

umentation. Some tags must be used, at the local

level, to provide guidance for the automatic tool.
The automatic tool could generate HTML files,

with hyperlinks, such that the header of each

routine could be printed on screen, with the de-

scription of what it does, the name of routines that

call it (‘‘parents’’) and the name of routines that

are called by it (‘‘children’’). The index of all

routines could be created. A search tool could also

be created. Many other features such as an auto-
mated formatting of mathematical equations

could be envisioned as well. To implement the

above features systematically, developers must use

and adhere to a standard format for their com-

ments. Since this is typically seen as an extra

burden, the requested effort should be kept as

small as possible.

In ABINITv3.0, different auxiliary programs
are used to implement this concept.

The first of these programs, ‘‘ROBODoc’’ [90],

is a documentation tool that extracts specially

formatted comment headers from the source file. It

produces HTML (documentation) files automati-

cally from the source text for each subroutine,

including hyperlinks to access other subroutines�
HTML files, even across directories. ROBODoc
works with many languages, including FOR-

TRAN90. The ABINIT developer must include a
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standardised header for every function, containing

all sorts of information about that procedure/

function. Then, ROBODoc can create index tables

for all variables, classes, functions, etc.

However, ROBODoc does not provide auto-

matic listings of parent subroutines, although if
such a list were provided, the hyperlinks to them

would automatically be set up by ROBODoc. A

PERL script called ‘‘parents’’ has been devised as

to insert the list of parent routines in each routine

automatically, just before ROBODoc processing.

Mathematical equations are another problem-

atic issue with ROBODoc. It is partly resolved by

employing the freeware ‘‘src2tex’’ [91], which can
produce files from source files for each

subroutine, with nicely formatted equations. The

formatting of equations into style in each

routine is part of the ABINIT style. The format

for src2tex can be used simultaneously with

ROBODoc [92].

In ABINITv3.0, the source code is formatted for

ROBODoc and src2tex so that HTML/ files
can be prepared for on-line/off-line documentation.

In future versions, it is planned to make other

documents written in available as HTML

files thanks to converters such as TtH [93]. Then

the converted HTML files will be linked with the

HTML documentation files of the source code.

3.6. User self-learning

Another interesting aspect of ABINITv3.0 con-

cerns the possibility to learn how to use it without

having to contact the developers, or to follow a

school in a specified (geographic) location. For that

purpose, tutorials have been set up. Five lessons, of

2 h each (including the time for the computations

on a PC Pentium III at 800 MHz), written in
HTML, guide the student in his/her first steps.

In the first two lessons, the student is familiar-

ised with the computation of the formation energy,

electronic structure and optimised interatomic

distance of the hydrogen molecule, using different

algorithms and exchange-correlation functionals.

The third lesson introduces solid-state concepts,

through the computation of the electronic struc-
ture of silicon, the paradigm of an insulator. The

fourth lesson focuses on metallic aluminum, and

ends with the computation of the aluminum sur-

face energy. The fifth lesson deals with the dy-

namical and dielectric properties of AlAs (an

insulator): phonons at Gamma, dielectric con-

stant, Born effective charges, LO–TO splitting,

phonons in the whole Brillouin zone.
This basic introduction to the use of ABINIT is

completed by the availability of on-line manuals

and help files, describing all the input variables in

detail, as well as the availability of the input files

used in the automatic testing, which provide ex-

amples of the use of all the ABINIT functionalities.

We have tried to simplify the use of ABINIT as

much as possible. The organisation of the input
data relies upon two files. In the first one, called

‘‘files’’ file, the user specifies the name of input and

output files, including the pseudopotentials. It is

rather short, usually six or seven lines long. In the

other input file, the user specifies the values of all

input variables for which the default value is to be

overridden. This input file is parsed by ABINIT,

which checks the existence of input variable key-
words. There are more than 150 input variables,

but usually less than 20 of them need to be men-

tioned in this file. A metalanguage allows specifi-

cation of different sets of input variables in a single

input file, and even to chain them in order to ini-

tialise some computation on the basis of the result

of a previous computation in the same run.

3.7. Protocol for collaborative work

The concepts of free software, self-testing, self-

documentation and user self-learning are obvi-

ously important for international collaborative

development. It is also worth to organise the

synchronisation of the work.

At the level of a single group of developers, we
encourage the use of the CVS software [94] for

developing ABINIT. However, all the developers

must have access to the CVS repository for this

software to be able to synchronise development

efforts. Moreover, consultations between develop-

ers are still heavily needed.

The SourceForge [95] web site allows the

transposition of the CVS ideas to the global scale:
people from different countries, in different groups,

can have access to the same repository. We have
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tried to use the SourceForge repository, in No-

vember 2000, but the access to it was found to be

too slow for a project of the size of ABINIT. Thus,

the protocol for collaborative development that we

have followed since 1997 is still in effect.

We work in an iterative scatter–gather model: in
the first step of the iteration, an official ABINIT

version is released on the ABINIT web site; after

a short period of time, the list of non-overlapping

on-going development projects from the different

groups is set up and published; each group works

for two or three months on the part of ABINIT

that has been temporarily attributed to it; then the

contributions (source modifications and test cases)
are gathered; two or three weeks are needed for

the contributions to be merged (resolving possible

conflicts using CVS), then tested and ported on at

least five different platforms, before the release of a

new official ABINIT version.

Finally, we would like to mention the existence

of a coding style for ABINIT. In an effort to ho-

mogenise the coding style, we have explicitly
written out the rules to be followed by the different

groups of developers in a document called ‘‘cod-

ing_rules’’. This file is available in the ABINIT

package, and is often updated. It is built upon the

experience acquired during several years of devel-

opment (including the experience of portability

across platforms), and tries to build in ways to

avoid generating certain classes of bugs. As an
example, the use of ‘‘implicit none’’ is required in

all FORTRAN routines.

The 10 different sections of the ‘‘coding_rules’’

concern the style to be followed for the declaration

of variables, the choice of variable names, the

FORTRAN source file format (in particular this

format must allow processing by ROBODoc), the

constructions for flow control, the use of arrays,
some general good coding practice, specific coding

rules for exception handling, old-fashioned prac-

tice––to be avoided––the use of BLAS and LA-

PACK subroutines, and topics of current reflection.

4. Discussion

Compared to the stated goals for the ABINIT

project, much work still has to be done on the

basis of ABINITv3.0. We describe now the func-

tionalities that are currently under implementa-

tion, then the functionalities that are still lacking,

and finally different software engineering concepts

that have been only partially used, or are missing.

Different groups, beyond the current list of au-
thors, are contributing to these projects. A quite

accurate view of the current status of the project is

naturally available on the site [20].

The most ambitious implementation projects

relate to:

(1) the use of the projector augmented wave tech-

nique of Bl€oochl [13] and ultrasoft pseudopo-
tentials [10];

(2) interfacing ABINIT with a GW code;

(3) the treatment of spinor wavefunctions (includ-

ing SO) for the non-collinear magnetism case;

(4) the generalisation of response-function com-

putations to all cases presently available for

ground-state computations;

(5) band-by-band parallelisation, and the optimi-
sation of the current imple-mentated paral-

lelism, especially when different levels of

parallelisation are used concurrently;

Other development efforts concern:

(1) the recognition of spatial space group numbers;

(2) the 2nþ 1 theorem of density functional per-
turbation theory [71];

(3) Kohn–Sham exact exchange [86–88];

(4) Shubnikov (anti-ferromagnetic) symmetry

groups;

(5) the treatment of surface dipoles;

(6) frequency-dependent conductivity;

(7) further features related to the Berry phase

computation of the polarisation [96];
(8) the automatic generation of lattice Wannier

functions.

On the other hand, work is needed in the fol-

lowing aspects, but not yet scheduled:

(1) real-space treatment of the non-local operators

[97];
(2) decompositionof thedensity-of-states in atomic

orbital components;
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(3) response to elastic and alchemical perturba-

tions;

(4) new methods to optimise geometries, and the

computation of transition states.

At the level of software engineering, first there is

an ongoing effort to deal correctly with equations,

in the self-documentation. Then, derived datatypes

(scarcely present in ABINITv3.0) should be used.

The object-oriented features of FORTRAN90 are

also not used in ABINITv3.0: the object-oriented

FORTRAN90 capabilities are not as developed as

in Cþþ, but they should be incorporated. The F90
limitation in object-oriented features brings us of

course to the possible limits of the present ABINIT

basic options: for historical reasons (reuse of ex-

isting code), we have built a FORTRAN90 code.

As an alternative to Cþþ, many current open

source projects use Python scripting language

coupled with another language for compute-

intensive tasks (usually C, but why not F90). We
still think that the basic options of our project

should make it viable and fruitful for many years.

We feel that the ABINIT project is already

successful, in that a large number of capabilities

have been built in the relatively small time since

the beginning of the project. The organisation of

the collaborative work is such that many people

were able to contribute. We actually followed the
example given in the computer science community

for the development of Linux [98].

While this article does not focus on using

ABINIT to actually get useful calculations done,

the purpose of the project is of course to have a

reliable state-of-the-art computer program for

predicting properties of materials using ab initio

methods. In that light, there are over 70 publica-
tions listed on the ABINIT web site [20] showing

the wide scope of applications and the many in-

dividuals and groups that have used the code so

far. The growth of useful output is our primary

measure of success.
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