
ABINIT

The User’s Manual

ABINIT group (XG)

ed., Zhenhua Yao

Version 1.0, 22 May, 2004



ii

Copyright c©2004 ABINIT group (XG). All rights reserved.
This document is free; you can redistribute it and/or modify it under the terms of the GNU General

Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this document; if not,
write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.



Contents

1 New User Guide 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The sequential version of ABINIT: abinis . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Other programs in the ABINIT package . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Input variables to abinit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 What does the code do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Tutorial 5
2.1 Lesson 1: The H2 molecule, without convergence studies . . . . . . . . . . . . . . . 6

2.1.1 Computing the total energy, and some associated quantities . . . . . . . . . 6
2.1.2 Computation of the interatomic distance (method 1). . . . . . . . . . . . . 10
2.1.3 Computation of the interatomic distance (method 2) . . . . . . . . . . . . . 12
2.1.4 Computation of the charge density . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Computation of the atomization energy . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Answers to the questions, section 1.1.10 . . . . . . . . . . . . . . . . . . . . 15

2.2 Lesson 2:The H2 molecule, with convergence studies . . . . . . . . . . . . . . . . . 16
2.2.1 Summary of the previous lesson . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 The convergence in ecut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 The convergence in acell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 The final calculation in Local (Spin) Density Approximation . . . . . . . . 20
2.2.5 The use of the Generalized Gradient Approximation . . . . . . . . . . . . . 20

2.3 Lesson 3: Crystalline silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Computing the total energy of silicon at fixed number of k–points . . . . . 21
2.3.2 Starting the convergence study with respect to k–points . . . . . . . . . . . 22
2.3.3 Actually performing the convergence study with respect to k–points . . . . 22
2.3.4 Determination of the lattice parameters . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Computing the band structure . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Lesson 4: Aluminum, the bulk and the surface . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Computing the total energy and lattice parameters of aluminum for a fixed

smearing and number of k–points. . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 The convergence study with respect to k–points . . . . . . . . . . . . . . . . 27
2.4.3 The convergence study with respect to both number of k–points AND broad-

ening factor (tsmear) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.4 Determination of the surface energy of aluminum (100): changing the ori-

entation of the unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.5 Determination of the surface energy: a (3 aluminum layer + 1 vacuum layer)

slab calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.6 Determination of the surface energy: increasing the number of vacuum layers 30
2.4.7 Determination of the surface energy: increasing the number of aluminum

layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Lesson 5: Dynamical and dielectric properties of AlAs . . . . . . . . . . . . . . . . 32

iii



CONTENTS

2.5.1 The ground–state geometry of AlAs . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Frozen–phonon calculation of a second derivative of the total energy . . . . 33
2.5.3 Response–function calculation of a second derivative of the total energy . . 35
2.5.4 Response–function calculation of the dynamical matrix at Gamma . . . . . 36
2.5.5 Response–function calculation of the effect of an homogeneous electric field 36
2.5.6 Response–function calculation of phonon frequencies at non–zero q . . . . . 39
2.5.7 The computation of full phonon band structures and thermodynamical prop-

erties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Lesson 6: The quasi–particle band structure of Silicon, in the GW approximation . 40

2.6.1 Computation of the Silicon band gap at Gamma, using a GW calculation . 40
2.6.2 Preparing convergence studies: Kohn–Sham structure (KSS file) and screen-

ing (EM1 file) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.3 Convergence on the number of planewaves in the wavefunctions to calculate

the Self–Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.4 Convergence on the number of planewaves to calculate Sigma x . . . . . . . 47
2.6.5 Convergence on the number of bands to calculate the Self–Energy . . . . . 48
2.6.6 Convergence on the number of planewaves in the wavefunctions to calculate

the screening (ε−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.7 Convergence on the number of bands to calculate the screening . . . . . . . 51
2.6.8 Convergence on the dimension of the ε−1 matrix . . . . . . . . . . . . . . . 52
2.6.9 Calculation of the GW corrections for the band gap in Gamma . . . . . . . 53

3 ABINIS Help 55
3.1 How to run the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Introducing the files file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Running the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 The underlying theoretical framework and algorithms . . . . . . . . . . . . 56

3.2 The input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.1 Format of the input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 More about ABINIT input variables . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 The multi–dataset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.4 Defining a series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.5 Defining a double loop dataset . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.6 File names in the multi–dataset mode . . . . . . . . . . . . . . . . . . . . . 62

3.3 The “files” file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 The pseudopotential files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 The different output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 The log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 The main output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.3 More on the main output file . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5.4 The header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.5 The density output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5.6 The potential files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.7 The wavefunction output file . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.8 Other output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Numerical quality of the calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Main ABINIT code, input variables: Complete list 79
4.1 Basic variables, VARBAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 acell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 angdeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.3 ecut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.4 iscf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

iv



CONTENTS

4.1.5 ixc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.6 jdtset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.7 kpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.8 kptnrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.9 kptopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.10 natom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.11 nband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.12 ndtset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.13 ngkpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.14 nkpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.15 nshiftk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.16 nsppol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.17 nstep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.18 nsym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.19 ntypat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.20 occopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1.21 rprim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.22 rprimd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.23 shiftk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.24 symrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.25 tnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.26 toldfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.27 toldff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.28 tolvrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.29 tolwfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.1.30 typat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.31 udtset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.32 xangst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.33 xcart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.34 xred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.1.35 znucl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Developpement variables, VARDEV . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.1 accesswff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.2 ceksph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.3 dedlnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.4 densty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.5 effmass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.6 eshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.7 exchn2n3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.8 fftalg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.9 fftcache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.2.10 freqsusin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.11 freqsuslo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.12 idyson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.13 ikhxc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.14 intexact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.15 intxc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.16 iprcch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.17 iprcfc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.18 isecur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.19 istatr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.20 istatshft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.21 istwfk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.22 ldgapp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

v



CONTENTS

4.2.23 mqgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.24 nbandsus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.25 nbdblock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.26 ndyson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.27 nfreqsus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.28 nloalg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2.29 nnsclo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.30 optforces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.31 ortalg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.32 qprtrb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.33 useria, userib, useric, userid, userie . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.34 userra, userrb, userrc, userrd, userre . . . . . . . . . . . . . . . . . . . . . . 105
4.2.35 useylm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.36 vprtrb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.37 wfoptalg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Files handling variables, VARFIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 cmlfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.2 getden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.3 getkss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.4 getocc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.5 getscr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.6 getwfk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.7 getwfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.8 get1wf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.9 getddk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.10 get1den . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.11 get1wfden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3.12 irdkss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.13 irdscr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.14 irdwfk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.15 irdwfq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.16 ird1wf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.17 irdddk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.3.18 kssform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.19 mffmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.20 mkmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.21 prtcml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.22 prtden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.23 prtdos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.24 prteig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.25 prtfsurf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.26 prtgeo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.27 prtkpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.28 prtpot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.29 prtvha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.30 prtvhxc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.31 prtvxc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3.32 prtstm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.33 prtvol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.3.34 prtwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3.35 prt1dm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Geometry builder + symmetry related variables, VARGEO . . . . . . . . . . . . . 118
4.4.1 brvltt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.2 genafm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vi



CONTENTS

4.4.3 natrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.4 nobj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.5 objaat, objbat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.6 objaax, objbax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.7 objan, objbn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.4.8 objarf, objbrf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.9 objaro, objbro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.10 objatr, objbtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.11 ptgroupma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.12 spgaxor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.4.13 spgorig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.14 spgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.4.15 spgroupma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4.16 vaclst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4.17 vacnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.5 Ground-state calculation variables, VARGS . . . . . . . . . . . . . . . . . . . . . . 124
4.5.1 algalch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.5.2 bdberry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.3 berryopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.5.4 boxcenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.5 boxcutmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.6 charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.5.7 chkexit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5.8 chkprim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5.9 cpus, cpum, cpuh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.5.10 diecut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.11 diegap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.12 dielam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.13 dielng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.5.14 diemac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.15 diemix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5.16 dosdeltae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.17 efield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.18 enunit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.5.19 fband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5.20 fixmom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5.21 iatsph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.5.22 iprcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.23 kberry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.24 kptbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5.25 kptrlatt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5.26 kptrlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5.27 mixalch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.5.28 natsph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5.29 nbdbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5.30 nberry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.5.31 ndivk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.5.32 ngfft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.5.33 nline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5.34 npsp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5.35 npspalch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.36 nqpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.37 nspden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.5.38 nspinor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

vii



CONTENTS

4.5.39 ntypalch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5.40 ntyppure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5.41 occ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5.42 optdriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.5.43 so typat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5.44 pspso (obsolete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5.45 qpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.5.46 qptnrm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5.47 ratsph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5.48 spinat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5.49 stmbias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.50 symafm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.51 timopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5.52 tphysel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.53 tsmear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.54 vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.55 vacwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 GW variables, VARGW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.6.1 bdgw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.6.2 ecuteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.6.3 ecutsigx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.6.4 ecutwfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.6.5 gwcalctyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.6.6 kptgw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.6.7 nbandkss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6.8 npwkss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6.9 nkptgw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.6.10 nomegasrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6.11 npweps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6.12 npwsigx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6.13 npwwfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6.14 nsheps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6.15 nshsigx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6.16 nshwfn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6.17 omegasrdmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6.18 ppmfrq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.6.19 soenergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.6.20 zcut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.7 Internal variables, VARINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.7.1 kptns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.7.2 mband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.3 mgfft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.4 mpw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.5 nelect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.6 nfft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.7 qptn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.7.8 usepaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.8 Parallelisation variables, VARPAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.8.1 localrdwf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.9 Projector-Augmented Wave variables, VARPAW . . . . . . . . . . . . . . . . . . . 151
4.9.1 ngfftdg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.9.2 pawecutdg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.9.3 pawlcutd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.9.4 pawmqgrdg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

viii



CONTENTS

4.9.5 pawnphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.9.6 pawntheta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.10 Response Function variables, VARRF . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10.1 dsifkpt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10.2 mkqmem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10.3 mk1mem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10.4 prepanl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.10.5 prtbbb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.10.6 rfasr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.10.7 rfatpol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.10.8 rf1atpol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.9 rf2atpol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.10 rf3atpol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.11 rfdir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.12 rf1dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.13 rf2dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.10.14 rf3dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.15 rfelfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.16 rf1elfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.17 rf2elfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.18 rf3elfd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.10.19 rfmeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.20 rfphon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.21 rf1phon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.22 rf2phon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.23 rf2phon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.24 rfstrs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.10.25 rfthrd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.10.26 rfuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.10.27 sciss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.10.28 td maxene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.10.29 td mexcit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.11 Structure optimization variables, VARRLX . . . . . . . . . . . . . . . . . . . . . . 159
4.11.1 amu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.11.2 delayperm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.11.3 dilatmx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.11.4 dtion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.11.5 ecutsm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.11.6 friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.11.7 getcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.11.8 getxcart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.11.9 getxred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.11.10 getvel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.11.11 iatcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.11.12 iatfix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.13 iatfixx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.14 iatfixy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.15 iatfixz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.16 ionmov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.17 mdftemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.11.18 mditemp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.19 mdwall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.20 natcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.21 natfix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

ix



CONTENTS

4.11.22 natfixx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.23 natfixy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.24 natfixz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.11.25 nconeq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.11.26 noseinert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.11.27 ntime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.11.28 ntypat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.11.29 optcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.11.30 restartxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.11.31 rfasr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.11.32 signperm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.11.33 strfact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.11.34 strprecon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.11.35 strtarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.11.36 tolmxf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.11.37 vel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.11.38 vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.11.39 wtatcon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Index 173

x



Chapter 1

New User Guide

Foreword

The ABINIT package is written by the ABINIT group. See the files \~ABINIT/Infos/context and
\~ABINIT/Infos/planning for more details about the ABINIT group and the ABINIT project.

You will find the welcome message, and basic information about the Web site in the welcome
address.

Before reading the present file, you should get the paper “Iterative minimization techniques
for ab initio total-energy calculations: molecular dynamics and conjugate gradients” M. C. Payne,
M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045–1097
(1992), and read the introductory section.

After having gone through this beginner’s introduction, you should follow the tutorial.

1.1 Introduction

ABINIT is a package whose main program allows finding the total energy, charge density and
electronic structure of systems made of electrons and nuclei (molecules and periodic solids) within
Density Functional Theory, using pseudopotentials and a planewave basis. ABINIT also includes
options to optimize the geometry according to the DFT forces and stresses, or to perform molec-
ular dynamics simulation using these forces, or to generate dynamical matrices, Born effective
charges, and dielectric tensors. In addition to the main ABINIT code, different utility programs
are provided.

We will use the name ~ABINIT to refer to the directory that contains the ABINIT package. In
practice, a version number is appended to this name, to give for example : ABINITv1.0.1. ~ABINIT
contains different subdirectories. For example, the present file, as well as other descriptive files,
should be found in ~ABINIT/Infos. Other subdirectories will be described later.

1.2 The sequential version of ABINIT: abinis

The main code exists in a sequential version, with the name abinis (ABINIT sequential), and in
a parallel version, with the name abinip (ABINIT parallel). In the present new user’s help file,
we will suppose that the sequential version is used. After installation, it is present in the package
as ~ABINIT/abinis.

To run abinis you need four things:

• Access to the executable, abinis.

• An input file.

• A files file (list of file names in a file).

1

http://www.abinit.org/ABINIT/Infos_v4.3/welcome.html
http://www.abinit.org/ABINIT/Infos_v4.3/welcome.html
http://www.abinit.org/ABINIT/Infos_v4.3/Tutorial/welcome.html


1.3. OTHER PROGRAMS IN THE ABINIT PACKAGE

• A pseudopotential input file for each kind of element in the unit cell.

With these items a job can be run.
The full list of input variables, all of which are provided in the single input file, is given in the

ABINIT input variables file.
The detailed description of input variables is given in:

• Basic variables, VARBAS

• Developpement variables, VARDEV

• Geometry builder + symmetry related variables, VARGEO

• Ground-state calculation variables, VARGS

• GW variables, VARGW

• Files handling variables, VARFIL

• Parallelisation variables, VARPAR

• Projector-Augmented Wave variables, VARPAW

• Response Function variables, VARRF

• Structure optimization variables, VARRLX

A set of examples aimed at guiding the beginner is available in the tutorial. Other test cases
(more than 200 input files) can be found in the ~ABINIT/Test_fast, ~ABINIT/Test_v1, and
~ABINIT/Test_v2 directories.

Many different sorts of pseudopotentials can be used with ABINIT. Most of them can be
found on the ABINIT web site. There is a set of Teter hardness–conserving potentials, a set of
Troullier–Martins potentials, a few Goedecker–Teter–Hutter pseudopotentials, and Hartwigsen–
Goedecker–Hutter potentials for the whole periodic table. A subset of existing pseudopotentials
are used for test cases, and are located in the ~ABINIT/Psps_for_tests directory. Information
on pseudopotential files can be found in the ABINIT help file and the ~ABINIT/Infos/Psp_infos
directory.

1.3 Other programs in the ABINIT package

In addition to abinit, there are utility programs. mrgddb, anaddb, aim, conducti, newsp, and
cut3d are present in the package. Others (presently kptgen) might be found on the Web site.

mrgddb and anaddb allow to post–process reponses to atomic displacements and/or to homo-
geneous electric field, as generated by abinit, to produce full phonon band structures, or thermo-
dynamical functions. “mrgddb” is for “Merge of Derivative DataBases”, while “anaddb” is for
“Analysis of Derivative DataBases”.

Another utility is newsp, whose main routine source is called newsp.f. It allows a crude inter-
polation among the wavefunctions at different k points and is useful in reformatting wavefunction
files to restart jobs on either new unit cell geometries, new planewave cutoffs, or new k point grids.
Most of its capabilities have been transferred recently inside abinit, however.

cut3d can be used to post–process the three–dimensional density (or potential) files generated
by abinit. It allows to deduce charge density in selected planes (for isodensity plots), along selected
lines, or at selected points. It allows also to make the Hirshfeld decomposition of the charge density
in “atomic” contributions.

aim is also a post–processor of the three–dimensional density files generated by abinit. It
performs the Bader Atom–In–Molecule decomposition of the charge density in “atomic” contribu-
tions.

2

http://www.abinit.org/ABINIT/Infos_v4.3/keyhr.html
http://www.abinit.org/ABINIT/Infos_v4.3/varbas.html
http://www.abinit.org/ABINIT/Infos_v4.3/vardev.html
http://www.abinit.org/ABINIT/Infos_v4.3/vargeo.html
http://www.abinit.org/ABINIT/Infos_v4.3/vargs.html
http://www.abinit.org/ABINIT/Infos_v4.3/vargw.html
http://www.abinit.org/ABINIT/Infos_v4.3/varfil.html
http://www.abinit.org/ABINIT/Infos_v4.3/varpar.html
http://www.abinit.org/ABINIT/Infos_v4.3/varpaw.html
http://www.abinit.org/ABINIT/Infos_v4.3/varrf.html
http://www.abinit.org/ABINIT/Infos_v4.3/varrlx.html
http://www.abinit.org/ABINIT/Infos_v4.3/abinis_help.html#5
http://www.abinit.org/index.html#utile


CHAPTER 1. NEW USER GUIDE

conducti allows to compute the frequency–dependent optical conductivity.
A last one is kptgen, that allows to find the symmetries of a set of atoms in a unit cell, and to

generate grids of k–points. It is available on the Web site. All of its capabilities are present inside
abinit, however, and are even more sophisticated.

At the level of graphics, many commercial or free softwares can be used to visualize ABINIT
outputs. Some indications are contained in the ~ABINIT/Infos/Tutorial/lesson_visual file,
but this topics has not yet been the subject of a systematic help file.

1.4 Input variables to abinit

The ABINIT help file describes the input variables and the output file. As an overview, the most
important input variables are listed below:

acell(3) lattice constant of periodic cell in bohr.
ecut planewave kinetic energy cutoff in hartree.
ionmov when ionmov

= 0: the ions and cell shape are fixed
= 2: search for the equilibrium geometry
= 6: molecular dynamics

iscf either a positive number for defining self–consistent algorithm
(usual), or −2 for band structure in fixed potential

kptopt option for specifying the k–point grid. If kptopt = 1, automatic
generation, using ngkpt and shiftk. (for the latter, see abinis help)

natom total number of atoms in unit cell
ngkpt(4) dimensions of the three–dimensional grid of k-points
nstep maximal number of self–consistent cycles (on the order of 20)
ntime number of molecular dynamics or relaxation steps.
ntypat number of types of atoms
occopt set the occupation of electronic levels:

= 1 for semiconductors
= 3 . . . 7 for metals

rfelfd when 6= 0: will do response calculation to electric field
rfphon when = 1: will do response calculation to atomic displacements
rprim(3,3) dimensionless primitive translations of periodic cell; each COLUMN

of this array is one primitive translation
typat(natom) sequence of integers, specifying the type of each atom.

NOTE: the atomic coordinates (xangst, xcart or xred) must be spec-
ified in the same order

tolmxf force tolerance for structural relaxation in hartree/bohr
tolvrs tolerance on self-consistent convergence
xangst(3,natom) cartesian coordinates (Angstrom) of atoms in unit cell. NOTE: only

used when “xred” and “xcart” are absent
xcart(3,natom) cartesian coordinates (bohr) of atoms in unit cell. NOTE: only used

when “xred” and “xangst” are absent
xred(3,natom) fractional coordinates for atomic locations; NOTE: leave out if

“xangst” or “xcart” is used
znucl(ntypat) Nuclear charge of each type of element; must agree with nuclear

charge found in psp file.

1.5 Output files

Output from a abinis run shows up in several files and in the standard output. Usually one runs
the command with a pipe of standard output to a log file, which can be inspected for warnings
or error messages if anything goes wrong or otherwise can be discarded at the end of a run. The

3

http://www.abinit.org/ABINIT/Infos_v4.3/abinis_help.html


1.6. WHAT DOES THE CODE DO?

more easily readable formatted output goes to the output file whose name is given in the “files”
file, i.e. you provide the name of the formatted output file. No error message is reported in the
latter file. On the other hand, this is the file that is usually kept for archival purposes.

In addition, wavefunctions can be input (starting point) or output (result of the calculation),
and possibly, charge density and/or electrostatic potential, if they have been asked for. These
three sets of data are stored in unformatted files.

The Density Of States (DOS) can also be an output as a formatted (readable) file. An analysis
of geometry can also be provided (GEO file) The name of these files is constructed from a “root”
name, that must be different for input files and output files, and that is provided by the user, to
which the code will append a descriptor, like WFK for wavefunctions, DEN for the density, POT
for the potential, DOS for the density of states ...

There are also different temporary files. A “root” name should be provided by the user, from
which the code generate a full name. Amongst these files, there is a “status” file, summarizing
the current status of advancement of the code, in long jobs. ABINIT abinis_help contains more
details.

1.6 What does the code do?

The simplest sort of job computes an electronic structure for a fixed set of atomic positions within
a periodic unit cell. By electronic structure, we mean a set of eigenvalues and wavefunctions which
achieve the lowest (DFT) energy possible for that basis set (that number of planewaves). The code
takes the description of the unit cell and atomic positions and assembles a crystal potential from
the input atomic pseudopotentials, then uses either an input wavefunction or simple gaussians to
generate the initial charge density and screening potential, then uses a self–consistent algorithm to
iteratively adjust the planewave coefficients until a sufficient convergence is reached in the energy.

Analytic derivatives of the energy with respect to atomic positions and unit cell primitive
translations yield atomic forces and the stress tensor. The code can optionally adjust atomic
positions to move the forces toward zero and adjust unit cell parameters to move toward zero
stress. It can performs molecular dynamics. It can also be used to find responses to atomic
displacements and homogeneous electric field, so that the full phonon band structure can be
constructed...

In order to know more about ABINIT, please follow the Tutorial.

4

http://www.abinit.org/ABINIT/Infos_v4.3/Tutorial/welcome.html


Chapter 2

Tutorial

This tutorial is aimed at teaching the use of ABINIT, in the UNIX/Linux OS and its variants
(OSF, HP–UX, AIX ...). It might be used for other operating systems, but the commands have
to be adapted.

Note that it can be accessed from the ABINIT web site as well as from your local ~ABINIT/
Infos/Tutorial/welcome.html file. The latter solution is of course preferable, as the response
time will be independent on the network traffic.

At present, six lessons are available. Each of them is at most two hours of student work.
Lessons 1–4 cover basics, other lectures are more specialized.

Copyright (C) 2000–2004 ABINIT group (XG, RC)
This file is distributed under the terms of the GNU General Public License, see ~ABINIT/

Infos/copyright or http://www.gnu.org/copyleft/gpl.txt. For the initials of contributors,
see ~ABINIT/Infos/contributors.

Before following the tutorial, you should have read the “new user’s guide”, as well as the pages
1045–1058 of the paper “Iterative minimization techniques for ab initio total–energy calculations:
molecular dynamics and conjugate gradients”, by M. C. Payne, M. P. Teter, D. C. Allan, T. A.
Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

After the tutorial, you might find useful to learn about the tests cases contained in directo-
ries ~ABINIT/Test_fast, ~ABINIT/Test_v1, ~ABINIT/Test_v2, ~ABINIT/Test_v3 and ~ABINIT/
Test_v4, that provide many example input files. You should have a look at the README files of
these directories.

Additional informations can be found in the ~ABINIT/Infos directory, including the description
of the ABINIT project, guide lines for developers, more on the use of the code (tuning) ...

Brief contents:
Lessons 1–4 present the basic concepts, and form a whole: you should not skip one of these.

• Lesson 1 deals with the H2 molecule: get the total energy, the electronic energies, the charge
density, the bond length, the atomization energy.

• Lesson 2 deals again with the H2 molecule: convergence studies, LDA versus GGA.

• Lesson 3 deals with crystalline silicon (an insulator): the definition of a k–point grid, the
smearing of the cut–off energy, the computation of a band structure, and again, convergence
studies ...

• Lesson 4 deals with crystalline aluminum (a metal), and its surface: occupation numbers,
smearing the Fermi–Dirac distribution, the surface energy, and again, convergence studies
...

Lessons 5 and beyond present more specialized topics. You can pick one of these at random:
with lessons 1–4 you know enough to start one of the others.

5

http://www.gnu.org/copyleft/gpl.txt


2.1. LESSON 1: THE H2 MOLECULE, WITHOUT CONVERGENCE STUDIES

• The fifth lesson deals with the dynamical and dielectric properties of AlAs (an insulator):
phonons at Gamma, dielectric constant, Born effective charges, LO–TO splitting, phonons
in the whole Brillouin zone (in the future, it should also present the interatomic forces and
the computation of thermodynamical properties).

• The sixth lesson deals with the computation of the quasi–particle band structure of Silicon,
in the GW approximation (so, much better than the Kohn–Sham LDA band structure)

That’s all for now ...
The following topics should be covered later:

• the choice of pseudopotentials.

2.1 Lesson 1: The H2 molecule, without convergence stud-
ies

This lesson aims at showing how to get the following physical properties:

• The (pseudo)total energy;

• The bond length;

• The charge density;

• The atomization energy.

You will learn about the two input files, the basic input variables, the existence of defaults, the
actions of the preprocessor, and the use of the multi–dataset feature. You will also learn about
the two output files as well as the density file.

This first lesson covers the sections 1, 3, 4 and 6 of the abinis_help file.
The very first step is a detailed tour of the input and output files: you are like a tourist, and

you discover a town in a coach. You will have a bit more freedom after that first step ...
It is supposed that you have some good knowledge of UNIX/Linux.
This lesson should take about 2 hours to be done.

2.1.1 Computing the total energy, and some associated quantities

This is the first step (the most important, and the most difficult!).
Note that the present tutorial will use four different windows: one to visualize the html text

of the tutorial (the present windows), a second to run the code, a third to visualize sections of
the abinis_help file (that will open automatically), and a fourth one for the html input variables
(that will also open automatically). Try to manage adequately these four windows ...

1. In addition to the present windows, open the second windows. Go to the Tutorial directory
(that we refer as ~ABINIT/Tutorial).

cd ~ABINIT/Tutorial

In that directory, you will find the necessary input files to run the examples related to this
tutorial. Take a few seconds to read the names of the files and directories already present in
~ABINIT/Tutorial.

2. You also need a working directory. So, you should create a subdirectory of this directory,
whose name might be “Work” (so ~ABINIT/Tutorial/Work). Change the working directory
of windows 2 to “Work”:

6



CHAPTER 2. TUTORIAL

mkdir Work
cd Work

You will do most of the actions of this tutorial in this working directory. Copy the file
t1x.files in “Work”:

cp ../t1x.files .

3. Edit the t1x.files. It is not very long (only 6 lines). It gives the informations needed for
the code to build other file names ... You will discover more about this file in the section 1.1
of the abinis_help file. Please, read it now (the third window shows up when you click on
this link).

4. Modify the first and second lines of t1x.files file, so that they read:

t11.in
t11.out

Later, you will again modify these lines, to treat more cases. Close the t1x.files file. Then,
copy the file ~ABINIT/Tutorial/t11.in in “Work”:

cp ../t11.in .

Also later, we will look at this file, and learn about its content. For now, you will try to run
the code. Its location is ../../abinis, So, in the Work directory, type:

../../abinis < t1x.files >& log

Wait a few seconds ... it’s done! You can look at the content of the Work directory.

ls

Different output files have been created, including a “log” file and the output file “t11.out”.
To check that everything is correct, you can make a diff of t11.out with a reference file
(that used slightly different names):

diff t11.out ../Refs/t11.out | more

You should get inoffensive differences, like differences in the name of input files or timing
differences, like the following:

5c5
< Starting date : Tue 4 Jul 2000.
---
> Starting date : Thu 22 Jun 2000.
7c7
< - input file -> t11.in
---
> - input file -> ../t11.in
9,10c9,10
< - root for input files -> t1xi
< - root for output files -> t1xo
---
> - root for input files -> t11i
> - root for output files -> t11o

7



2.1. LESSON 1: THE H2 MOLECULE, WITHOUT CONVERGENCE STUDIES

214c214
< - Total cpu time (s,m,h): 4.7 0.08 0.001
---
> - Total cpu time (s,m,h): 4.6 0.08 0.001
221,229c221,228

(... and what comes after that is related only to timing ...). If you do not run on a PC under
Linux, you might also have small numerical differences, on the order of 1.0× 10−10 at most.

If you get something else, you should ask for help!

Supposing everything went well, we will now detail the different steps that took place: how
to run the code, what is in the “t11.in” input file, and, later, what is in the “t11.out” and
“log” output files.

5. Running the code is described in the section 1.2 of the abinis_help file. Please, read it
now.

6. It is now time to edit the t11.in file. You can have a first glance at it. It is not very
long: about 40 lines, mostly comments. Do not try to understand everything immediately.
After having gone through it, you should read general explanation about its content, and
the format of such input files in the section 3.1 of the abinis_help file.

7. You might now examine in more details some input variables. An alphabetically ordered
index of all variables is provided, and their description is found in the following files:

• Basic variables, VARBAS;

• Development variables, VARDEV;

• Files handling variables, VARFIL;

• Geometry builder + symmetry related variables, VARGEO;

• Ground–state calculation variables, VARGS;

• GW variables, VARGW;

• Internal variables, VARINT;

• Parallelization variables, VARPAR;

• Response Function variables, VARRF;

• Structure optimization variables, VARRLX.

However, the number of such variables is rather large! Note that a dozen of input variables
were needed to run the first test case. This is possible because there are defaults values for
the other input variables. When it exists, the default value is mentioned at the end of the
section related to each input variable, in the corresponding input variables file. Some input
variables are also preprocessed, in order to derive convenient values for other input variables.
Defaults are not existing or were avoided for the few input variables that you find in t11.in.
These are particularly important input variables. So, take a few minutes to have a look at
the input variables of t11.in:

• acell,

• ntypat,

• znucl,

• natom,

• typat,

• xcart,

• ecut,

8



CHAPTER 2. TUTORIAL

• nkpt,

• nstep,

• toldfe,

• diemac,

• diemix.

Have also a look at kpt and iscf.

It is now time to have a look at the two output files of the run.

8. First, edit the “log” file. You can begin to read it. It is nasty. Jump to its end. You will find
there the number of WARNINGS and COMMENTS that were issued by the code during
execution. You might try to find them in the file (localize the keywords “WARNING” or
“COMMENT” in this file). Some of them are for the experienced user. For the present time,
we will ignore them. You can find more information about messages in the log file in the
section 6.1 of the abinis_help file.

9. Then, edit the “t11.out” file. You find some general information about the output file in
section 6.2 of the abinis_help file. You should also:

• examine the header of “t11.out”,

• examine the report on memory needs (do not read each value of parameters),

• examine the echo of preprocessed input data,

until you reach the message:

chkinp : Checking input parameters for consistency.

If the code does not stop there, the input parameters are consistent. At this stage, many
default values have been provided, and the preprocessing is finished.

It is worth to come back to the echo of preprocessed input data. You should first examine the
“t11.in” file in more details, and read the meaning of each of its variables in the corresponding
input variables file, if it has not yet been done. Then, you should examine some variables
that were NOT defined in the input file, but that appear in the echo written in “t11.out”:

• “nband”: its value is 2.
It is the number of electronic states that will be treated by the code. It has been com-
puted by counting the number of valence electrons in the unit cell (summing the valence
electrons brought by each pseudopotential) then occupying the lowest states (look at
the “occ” variable), and adding some states (at least one, maybe more, depending on
the size of the system).

• “ngfft”: its value is 30 30 30.
It is the number of points of the three–dimensional FFT grid. It has been derived from
“ecut” and the dimension of the cell (“acell”).
The maximal number of plane waves “mpw” is mentioned in the memory evaluation
section: it is 752.
Well, this is not completely right, as the code took advantage of the time–reversal
symmetry, valid for the k–point (0 0 0), to decrease the number of planewave by about
a factor of two.
The full set of plane waves is 1503 (see later in the “t11.out” file).
The code indicates the time–reversal symmetry by a value of istwfk= 2, instead of the
usual istwfk= 1 default.

9



2.1. LESSON 1: THE H2 MOLECULE, WITHOUT CONVERGENCE STUDIES

• “nsym”: its value is 16.
It is the number of symmetries of the system. The 3 × 3 matrices symrel define the
symmetries operation. In this case, none of the symmetries is accompanied by a trans-
lation, that would appear in the variable “tnons”. The code did an automatic analysis
of symmetries. They could alternatively be set by hand, or using the symmetry builder
(to be described later).

• “xangst” and “xred” are alternative ways to “xcart” to specify the positions of atoms
within the primitive cell.

Now, you can start reading the description of the remaining of the t11.out file, in the section
6.3 of the abinis_help file. Look at the t11.out file at the same time.

10. You have read completely an output file!

Could you answer the following questions?

• Q1. How many SCF cycles were needed to have the toldfe criterion satisfied?

• Q2. Is the energy likely more converged than toldfe?

• Q3. What is the value of the force on each atom, in Ha/Bohr?

• Q4. What is the difference of eigenenergies between the two electronic states?

• Q5. Where is located the maximum of the electronic density, and how much is it, in
electrons/Bohr3?

(answers are given at the end of the present file)

2.1.2 Computation of the interatomic distance (method 1).

1. Starting from now, everytime a new input variable is mentioned, you should read the corre-
sponding descriptive section in the ABINIT help.

We will now complete the description of the meaning of each term: there are still a few
indications that you should be aware of, even if you will not use them in the tutorial. These
might appear in the description of some input variables ... For this, you should read the
section 3.2 of the abinis_help file.

2. There are three methodologies to compute the optimal distance between the two Hydrogen
atoms:

• one could compute the TOTAL ENERGY for different values of the interatomic
distance, make a fit through the different points, and determine the minimum of the
fitting function;

• one could compute the FORCES for different values of the interatomic distance, make
a fit through the different values, and determine the zero of the fitting function;

• one could use an automatic algorithm for minimizing the energy (or finding the zero of
forces).

We will begin with the computation of energy and forces for different values of the interatomic
distance. This exercise will allow you to learn how to use multiple datasets.

The interatomic distance in the t11.in file was 1.4 Bohr. Suppose you decide to examine
the interatomic distances from 1.0 Bohr to 2.0 Bohr, by steps of 0.05 Bohr. That is, 21
calculations.

If you are a UNIX guru, it will be easy for you to write a script that will drive these 21
calculations, changing automatically the variable “xcart” in the input file, and then gather
all the data, in a convenient form to be plotted.

10



CHAPTER 2. TUTORIAL

Well, are you a UNIX guru? If not, there is an easier path, all within ABINIT!

This is the multi–dataset mode. Detailed explanations about it can be found in sections 3.3,
3.4, 3.5 and 3.6, of the abinis_help file.

3. Now, can you write an input file that will do the computation described above (interatomic
distances from 1.0 Bohr to 2.0 Bohr, by steps of 0.05 Bohr)? You might start from t11.in.
Try to define a series, and to use the “getwfk” input variable (the latter will make the
computation much faster).

You should likely have a look at the section that describes the “irdwfk” and “getwfk” input
variables: in particular, look at the meaning of getwfk −1.

Also, define explicitly the number of states (or supercell “bands”) to be one, using the input
variables “nband”. The input file ~ABINIT/Tutorial/t12.in is an example of file that will
do the job, while ~ABINIT/Tutorial/Refs/t12.out is an example of output file. If you
decide to use the ~ABINIT/Tutorial/t12.in file, do not forget to change the file names in
the t1x.files file ...

So, you run the code with your input file (this might take one or two minutes), examine the
output file quickly (there are many repetition of sections, for the different datasets), and get
the output energies gathered in the final echo of variables:

etotal1 -1.0368223891E+00
etotal2 -1.0538645432E+00
etotal3 -1.0674504850E+00
etotal4 -1.0781904896E+00
etotal5 -1.0865814785E+00
etotal6 -1.0930286804E+00
etotal7 -1.0978628207E+00
etotal8 -1.1013539124E+00
etotal9 -1.1037224213E+00
etotal10 -1.1051483730E+00
etotal11 -1.1057788247E+00
etotal12 -1.1057340254E+00
etotal13 -1.1051125108E+00
etotal14 -1.1039953253E+00
etotal15 -1.1024495225E+00
etotal16 -1.1005310615E+00
etotal17 -1.0982871941E+00
etotal18 -1.0957584182E+00
etotal19 -1.0929800578E+00
etotal20 -1.0899835224E+00
etotal21 -1.0867972868E+00

You might try to plot these data (see fig. 2.1. The minimum of energy in the above list is
clearly between dataset 11 and 12, that is:

xcart11 -7.5000000000E-01 0.0000000000E+00 0.0000000000E+00
7.5000000000E-01 0.0000000000E+00 0.0000000000E+00

xcart12 -7.7500000000E-01 0.0000000000E+00 0.0000000000E+00
7.7500000000E-01 0.0000000000E+00 0.0000000000E+00

corresponding to a distance of H atoms between 1.5 Bohr and 1.55 Bohr. The forces vanish
also between 1.5 Bohr and 1.55 Bohr:

fcart11 -5.4963645520E-03 0.0000000000E+00 0.0000000000E+00

11



2.1. LESSON 1: THE H2 MOLECULE, WITHOUT CONVERGENCE STUDIES

-1.11

-1.1

-1.09

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

 0  5  10  15  20  25

E

N

Figure 2.1: First figure

5.4963645520E-03 0.0000000000E+00 0.0000000000E+00
fcart12 6.9585355532E-03 0.0000000000E+00 0.0000000000E+00

-6.9585355532E-03 0.0000000000E+00 0.0000000000E+00

From these two values, using a linear interpolation, one get the optimal value of 1.522 Bohr.
Note that the number of SCF cycles drops from 7 to 5 when the wavefunctions are read from
the previous dataset.

2.1.3 Computation of the interatomic distance (method 2)

1. The other methodology is based on an automatic computation of the minimum. There are
different algorithms to do that. See the input variable “ionmov”, with values 2, 3 and 7. In
the present case, with only one degree of freedom to be optimized, the best choice is ionmov
3.

You have also to define the maximal number of timesteps for this optimization. Set the
input variable “ntime” to 10, it will be largely enough. For the stopping criterion “tolmxf”,
use the reasonable value of 5.0× 10−4 Ha/Bohr. This defines the force threshold to consider
that the geometry is converged. The code will stop if the residual forces are below that value
before reaching “ntime”.

It is also worth to change the stopping criterion for the SCF cycle, in order to be sure that
the forces generated for each trial interatomic distance are sufficiently converged. So, change
“toldfe” in “toldff”, and set the latter input variable to ten times smaller than “tolmxf”.
The input file ~ABINIT/Tutorial/t13.in is an example of file that will do the job, while
~ABINIT/Tutorial/Refs/t13.out is an example of output file. If you decide to use these
files, do not forget to change the file names in the t1x.files file ... So, you run the code
with your input file (it should take less than one minute), examine quietly this file (which is
much smaller than the t12.out file), and get some significant output data gathered in the
final echo of variables:

etotal -1.1058360628E+00
fcart 1.8438010986E-04 0.0000000000E+00 0.0000000000E+00

-1.8438010986E-04 0.0000000000E+00 0.0000000000E+00
...
xcart -7.6091430410E-01 0.0000000000E+00 0.0000000000E+00

7.6091430410E-01 0.0000000000E+00 0.0000000000E+00

According to these data (see xcart), the optimal interatomic distance is about 1.520 Bohr,
in good agreement with the estimation of t12.out. If you have time (this is to be done at

12



CHAPTER 2. TUTORIAL

home), you might try to change the stopping criteria, and redo the calculation, to see the
level of convergence of the interatomic distance.

Note that the final value of fcart in your run might differ slightly from the one shown
above (less than one percent change). Such a fluctuation is quite often observed for a value
converging to zero (remember, we ask the code to determine the equilibrium geometry, that
is, forces should be zero) when the same computation is done on different platforms.

2.1.4 Computation of the charge density

1. We start from the optimized interatomic distance 1.522 Bohr, and make a run at fixed
geometry. The input variable “prtden” must be set to 1. To understand correctly the
content of the “prtden” description, it is worth to read a much more detailed description of
the “files” file, in section 4 of the abinis_help file.

2. The input file ~ABINIT/Tutorial/t14.in is an example of input file for a run that will print
a density. If you decide to use this file, do not forget to change the file names in t1x.files.
The run will take a few seconds.

The density will be output in the t1xo DEN file. Try to edit it ... No luck! This file is
unformatted, not written using the ASCII code. Even if you cannot read it, its description
is provided in the abinis_help. It contains first a header, then the density numbers. The
description of the header is presented in section 6.4 of the abinis_help file, while the body of
the _DEN file in presented in section 6.5. It is the appropriate time to read also the description
of the potential files and wavefunctions files, as these files contain the same header as the
density file, see sections 6.6 and 6.7.

3. Such a density file can be read by ABINIT, to restart a calculation (see the input variable
iscf, when its value is −2), but more usually, by an utility called “cut3d”. This utility is
available in the ABINIT package. You might try to use it now, to generate two–dimensional
cuts in the density, and visualize the charge density contours.

Read the corresponding cut3d help file. Then, try to run cut3d to analyze t1xo_DEN. You
should first try to translate the unformatted density data to indexed formatted data, by using
option 6 in the adequate menu. Save the indexed formatted data to file t1xo_DEN_indexed.
Then, edit this file, to have an idea of the content of the _DEN files.

For further treatment, you might choose to select another option than 6. In particular, if
you have access to MATLAB, choose option 5. With minor modifications (set ngx=ngy=ngz
to 30) you will be able to use the file dim.m present in ~ABINIT/Tutorial to visualize the 3–
Dimensional isosurfaces. Another option might be to use the XCrysDen software, for which
you need to use option 9.

2.1.5 Computation of the atomization energy

1. The atomization energy is the energy needed to separate a molecule in its constituent atoms,
each being neutral. In the present case, one must compute first the total energy of an isolated
hydrogen atom. The atomization energy will be the difference between the total energy of
H2 and twice the total energy of H.

There are some subtleties in the calculation of an isolated atom:

• in many cases, the ground state of an isolated atom is spin–polarized, see the variables
“nsppol” and “spinat”;

• the highest occupied level might be degenerate with the lowest unoccupied level of the
same spin, in which case techniques usually appropriate for metals are to be used (see
lesson 4);

13



2.1. LESSON 1: THE H2 MOLECULE, WITHOUT CONVERGENCE STUDIES

• also often, the symmetry of the ground–state charge density will NOT be spherical,
so that the automatic determination of symmetries by the code, based on the atomic
coordinates, should be disabled, see the input variable “nsym”, to be set to 1 in this
case.

For Hydrogen, we are lucky that the ground state is spherical (1s orbital), and that the
highest occupied level and lowest unoccupied level, although degenerate, have a different
spin. We will define by hand the occupation of each spin, see the input variables occopt (to
be set to 2), and occ. Finally, in order to make numerical errors cancel, it is important to
compute the above–mentioned difference in the same box, for the same cut–off, and even for
a location in the box that is similar to the molecule case (although the latter might not be
so important).

The input file ~ABINIT/Tutorial/t15.in is an example of file that will do the job, while
~ABINIT/Tutorial/Refs/t15.out is an example of output file. If you decide to use the
t15.in file, do not forget to change the file names in the t1x.files file. The run lasts a
few seconds.

You should read the output file, and note the tiny differences related with the spin–polarization:

• the electronic eigenvalues are now given for both spin up and spin down cases:

Eigenvalues (hartree) for nkpt= 1 k points, SPIN UP:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)

-0.26422
Eigenvalues (hartree) for nkpt= 1 k points, SPIN DOWN:
kpt# 1, nband= 1, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)

-0.11117

• the spin polarization at each point of the FFT grid is also analyzed:

,Min spin pol zeta= 1.0000E+00 at reduced coord. 0.0000 0.0000 0.0000
, next min= 1.0000E+00 at reduced coord. 0.0333 0.0000 0.0000
,Max spin pol zeta= 1.0000E+00 at reduced coord. 0.9667 0.9667 0.9667
, next max= 1.0000E+00 at reduced coord. 0.9333 0.9667 0.9667

The zeta variable is the ratio between the spin–density difference and the charge density. It
varies between +1 and −1. In the present case of Hydrogen, there is no spin down density,
so the zeta variable is +1.

The total energy is
etotal -4.7010531340E-01

while the total energy of the H2 molecule is (see test 13):
etotal -1.1058360629E+00

The atomization energy is thus 0.1656 Ha.

At this stage, we can compare our results:

• bond length: 1.522 Bohr

• atomization energy at that bond length: 0.1656 Ha = 4.506 eV

with the experimental data as well as theoretical data using a much more accurate technique
(see Kolos and Roothaan, Rev. Mod. Phys. 32, 219 (1960), especially p.225):

• bond length: 1.401 Bohr;

• atomization energy: 4.747 eV.

14



CHAPTER 2. TUTORIAL

The bond length is awful (nearly 10% off), and the atomization energy is a bit too low, 5%
off.

What is wrong??

Well, are you sure that the input parameters that we did not discuss are correct? These are:

• ecut (the plane–wave kinetic energy cut–off);

• acell (the supercell size);

• ixc (not even mentioned until now, this input variable specifies what kind of exchange–
correlation functional is to be used ...)

• the pseudopotential.

We used 10 Ha as cut–off energy, a 10× 10× 10 Bohr3 supercell, the local–density approxi-
mation (as well as the local–spin–density approximation) in the Teter parameterization, and
a pseudopotential from the Goedecker–Hutter–Teter table (Phys. Rev. B 54, 1703 (1996)).

We will see in the next lesson how to address the choice of these parameters (except the
pseudopotential).

2.1.6 Answers to the questions, section 1.1.10

NOTE: there might be numerical differences, from platform to platform, in the quoted results!

1. Q1. 7 SCF cycles were needed:

iter Etot(hartree) deltaE(h) residm vres2 diffor maxfor
ETOT 1 -1.1013391225241 -1.101E+00 4.220E-04 8.396E+00 2.458E-02 2.458E-02
ETOT 2 -1.1034123727266 -2.073E-03 4.367E-09 1.668E+00 8.602E-03 3.318E-02
ETOT 3 -1.1037064870489 -2.941E-04 1.836E-05 3.207E-01 4.922E-03 3.810E-02
ETOT 4 -1.1037182046373 -1.172E-05 1.090E-07 8.675E-02 3.620E-04 3.774E-02
ETOT 5 -1.1037224013769 -4.197E-06 1.436E-07 1.829E-04 3.593E-04 3.738E-02
ETOT 6 -1.1037224209642 -1.959E-08 1.123E-09 1.445E-05 3.106E-05 3.741E-02
ETOT 7 -1.1037224213176 -3.534E-10 6.528E-12 8.113E-07 4.102E-06 3.741E-02

At SCF step 7, etot is converged:
for the second time, diff in etot= 3.534E-10 < toldfe= 1.000E-06

2. Q2. Yes, the energy is more converged than toldfe, since the stopping criterion asked for the
difference between successive evaluations of the energy to be smaller than toldfe twice in a
row, while the evolution of the energy is nice, and always decreasing by smaller and smaller
amounts.

3. Q3. These values are:

cartesian forces (hartree/bohr) at end:
1 -0.03740515236097 0.00000000000000 0.00000000000000
2 0.03740515236097 0.00000000000000 0.00000000000000

frms,max,avg= 2.1595875E-02 3.7405152E-02 0.000E+00 0.000E+00 0.000E+00 h/b

On the first atom (located at -0.7 0 0 in Cartesian coordinates, in Bohr), the force vector is
pointing in the minus x direction, and in the plus x direction for the second atom located
at +0.7 0 0.

The H2 molecule would like to expand ...

4. Q4. The eigenvalues (in Hartree) are mentioned at the lines

15



2.2. LESSON 2:THE H2 MOLECULE, WITH CONVERGENCE STUDIES

Eigenvalues (hartree) for nkpt= 1 k points:
kpt# 1, nband= 2, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-0.36526 -0.01379

As mentioned in the abinis_help file, the absolute value of eigenenergies is not meaningful.
Only differences of eigenenergies, as well as differences with the potential.

The difference is 0.35147 Hartree, that is 9.564 eV.

Moreover, remember that Kohn–Sham eigenenergies are formally NOT connected to exper-
imental excitation energies!

(Well, more is to be said later about this ...).

5. Q5. The maximum electronic density in electron per Bohr cube is reached at the mid–point
between the two H atoms:

,Max el dens= 2.6907E-01 el/bohr^3 at reduced coord. 0.0000 0.0000 0.0000

2.2 Lesson 2:The H2 molecule, with convergence studies

This lesson aims at showing how to get converged values for the following physical properties:

• the bond length;

• the atomization energy.

You will learn about the numerical quality of the calculations, then make convergence studies
with respect to the number of planewaves and the size of the supercell, and finally consider the
effect of the XC functional. The problems related to the use of different pseudopotential are left
for another lesson (still to be written ...).

You will also finish to read the abinis_help file.
This lesson should take about 1 hour to be done.

2.2.1 Summary of the previous lesson

We studied the H2 molecule in a big box. We used 10 Ha as cut–off energy, a 10× 10× 10 Bohr3

supercell, the local–density approximation (as well as the local–spin–density approximation) in the
Teter parameterization (ixc=1, the default), and a pseudopotential from the Goedecker–Hutter–
Teter table.

At this stage, we compared our results:

• bond length: 1.522 Bohr;

• atomization energy at that bond length: 0.1656 Ha = 4.506 eV.

with the experimental data (as well as theoretical data using a much more accurate technique
than DFT):

• bond length: 1.401 Bohr;

• atomization energy: 4.747 eV.

The bond length is awful (nearly 10% off), and the atomization energy is a bit too low, 5% off.

16



CHAPTER 2. TUTORIAL

2.2.2 The convergence in ecut

1. Computing the bond length and corresponding atomization energy in one run.

Before beginning, you might consider to work in a different subdirectory as for lesson 1. Why
not “Work2”?

Because we will compute many times the bond length and atomization energy, it is worth
to make a single input file that will do all the associated operations. You should try to use
2 datasets (try to combine ~ABINIT/Tutorial/t13.in with ~ABINIT/Tutorial/t15.in!).
Do not try to have the same position of the H atom as one of the H2 atoms in the optimized
geometry.

The input file ~ABINIT/Tutorial/t21.in is an example of file that will do the job, while
~ABINIT/Tutorial/Refs/t21.out is an example of output file. You might use ~ABINIT/
Tutorial/t2x.files as “files” file (do not forget to modify it), although it does not differ
from ~ABINIT/Tutorial/t1x.files. The run should take less than one minute.

You should obtain the values:

etotal1 -1.1058360629E+00
etotal2 -4.7010531340E-01

and

xcart1 -7.6091430410E-01 0.0000000000E+00 0.0000000000E+00
7.6091430410E-01 0.0000000000E+00 0.0000000000E+00

These are similar to those determined in lesson 1, although they have been obtained in one
run. You can also check that the residual forces are lower than 5.0 × 10−4. Convergence
issues are discussed in section 7 of the abinis_help file.

By the way, you have read all the most important parts of the abinis_help file! You are
missing the sections 2, 5, 8. You are also missing the description of many input variables. We
suggest that you finish to read entirely the above–mentioned sections of the abinis_help
file now, while the knowledge of the input variables will come in the long run.

2. Many convergence parameters have been already identified. We will focus only on cut and
acell. This is because

• the convergence of the SCF cycle and geometry determination are well under control
thanks to toldfe, toldff and tolmxf (this might not be the case for other physical prop-
erties);

• there is no k–point convergence study to be done for an isolated system in a big box:
no additional information is gained by adding a k–point beyond one;

• the boxcut value is automatically chosen larger than 2 by ABINIT, see the determination
of the input variable “ngfft” by preprocessing;

• we are using ionmov=3 for the determination of the geometry.

For the check of convergence with respect to ecut, you have the choice between doing different
runs of the t21.in file with different values of ecut, or doing a double loop of datasets, as
proposed in ~ABINIT/Tutorial/t22.in. The values of ecut have been chosen between 10Ha
and 35Ha, by step of 5 Ha. If you want to make a double loop, you might benefit of reading
again the double–loop section of the abinis_help file.

3. You have likely seen a big increase of the CPU time needed to do the calculation (now, a few
minutes). You should also look at the increase of the memory needed to do the calculation
(go back to the beginning of the output file). The output data are as follows:

17



2.2. LESSON 2:THE H2 MOLECULE, WITH CONVERGENCE STUDIES

etotal11 -1.1058360629E+00
etotal12 -4.7010531340E-01
etotal21 -1.1218715957E+00
etotal22 -4.7529731218E-01
etotal31 -1.1291943792E+00
etotal32 -4.7773586216E-01
etotal41 -1.1326879404E+00
etotal42 -4.7899907995E-01
etotal51 -1.1346739190E+00
etotal52 -4.7972721394E-01
etotal61 -1.1359660026E+00
etotal62 -4.8022016187E-01

xcart11 -7.6091430410E-01 0.0000000000E+00 0.0000000000E+00
7.6091430410E-01 0.0000000000E+00 0.0000000000E+00

xcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart21 -7.5104996718E-01 0.0000000000E+00 0.0000000000E+00

7.5104996718E-01 0.0000000000E+00 0.0000000000E+00
xcart22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart31 -7.3977137323E-01 0.0000000000E+00 0.0000000000E+00

7.3977137323E-01 0.0000000000E+00 0.0000000000E+00
xcart32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart41 -7.3304297557E-01 0.0000000000E+00 0.0000000000E+00

7.3304297557E-01 0.0000000000E+00 0.0000000000E+00
xcart42 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart51 -7.3001593298E-01 0.0000000000E+00 0.0000000000E+00

7.3001593298E-01 0.0000000000E+00 0.0000000000E+00
xcart52 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart61 -7.2955932741E-01 0.0000000000E+00 0.0000000000E+00

7.2955932741E-01 0.0000000000E+00 0.0000000000E+00
xcart62 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

The corresponding atomization energies and interatomic distances are:

ecut atomisation interatomic distance
(Ha) energy (Ha) (Bohr)

10 .1656 1.522
15 .1713 1.502
20 .1737 1.480
25 .1747 1.466
30 .1753 1.460
35 .1756 1.459

In order to obtain 0.2% relative accuracy on the bond length or atomization energy, one
should use a kinetic cut–off energy of 30 Ha. We will keep in mind this value for the final
run.

Well, 30 Ha is a large kinetic energy cut–off! The pseudopotential that we are using for
Hydrogen is rather “hard” ...

2.2.3 The convergence in acell

The same technique as for ecut should be now used for the convergence in acell. We will explore
acell starting from 8 8 8 to 18 18 18, by step of 2 2 2. We keep ecut 10 for this study. Indeed, it

18



CHAPTER 2. TUTORIAL

is a rather general rule that there is little cross–influence between the convergence of ecut and the
convergence of acell. The file ~ABINIT/Tutorial/t23.in can be used as an example. The CPU
time needed is also in the order of a few minutes. The output data (~ABINIT/Tutorial/Refs/
t23.out) are as follows:

etotal11 -1.1188128742E+00
etotal12 -4.8074164342E-01
etotal21 -1.1058360629E+00
etotal22 -4.7010531340E-01
etotal31 -1.1039109441E+00
etotal32 -4.6767804747E-01
etotal41 -1.1039012761E+00
etotal42 -4.6743724167E-01
etotal51 -1.1041439320E+00
etotal52 -4.6735895144E-01
etotal61 -1.1042058190E+00
etotal62 -4.6736729686E-01

xcart11 -7.8427119905E-01 0.0000000000E+00 0.0000000000E+00
7.8427119905E-01 0.0000000000E+00 0.0000000000E+00

xcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart21 -7.6091430410E-01 0.0000000000E+00 0.0000000000E+00

7.6091430410E-01 0.0000000000E+00 0.0000000000E+00
xcart22 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart31 -7.5472620965E-01 0.0000000000E+00 0.0000000000E+00

7.5472620965E-01 0.0000000000E+00 0.0000000000E+00
xcart32 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart41 -7.5491934758E-01 0.0000000000E+00 0.0000000000E+00

7.5491934758E-01 0.0000000000E+00 0.0000000000E+00
xcart42 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart51 -7.5427689417E-01 0.0000000000E+00 0.0000000000E+00

7.5427689417E-01 0.0000000000E+00 0.0000000000E+00
xcart52 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
xcart61 -7.5415539738E-01 0.0000000000E+00 0.0000000000E+00

7.5415539738E-01 0.0000000000E+00 0.0000000000E+00
xcart62 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

The corresponding atomization energies and interatomic distances are:
acell (Bohr) atomization energy (Ha) interatomic distance (Bohr)

8 .1574 1.568
10 .1656 1.522
12 .1686 1.509
14 .1691 1.510
16 .1694 1.508
18 .1695 1.508

In order to reach 0.2% convergence on the interatomic distance, one needs acell 12 12 12. The
atomization energy needs acell 14 14 14 to be converged at that level. At 12 12 12, the difference
is .0009 Ha=0.024eV, which is sufficiently small for practical purposes. We will use acell 12 12
12 for the final run.

For most solids the size of the unit cell will be smaller than that. We are treating a lot of
vacuum in this supercell! So, the H2 study, with this pseudopotential, turns out to be not really
easy. Of course, the number of states to be treated is minimal! This allows to have reasonable
CPU time still.

19



2.2. LESSON 2:THE H2 MOLECULE, WITH CONVERGENCE STUDIES

2.2.4 The final calculation in Local (Spin) Density Approximation

We now use the correct values of both ecut and acell. Well, you should modify the t23.in file
to make a calculation with acell 12 12 12 and ecut 30. You can still use the double loop feature
with udtset 1 2 (which reduces to a single loop), to minimize the modifications to the file. The
file ~ABINIT/Tutorial/t24.in can be taken as an example of input file, and ~ABINIT/Tutorial/
Refs/t24.out as an example of output file.

Since we are doing the calculation at a single (ecut, acell) pair, the total CPU time is not as
much as for the previous determinations of optimal values through series calculations. However,
the memory needs have still increased a bit.

The output data are:

etotal11 -1.1329372052E+00
etotal12 -4.7765320649E-01

xcart11 -7.2661954446E-01 0.0000000000E+00 0.0000000000E+00
7.2661954446E-01 0.0000000000E+00 0.0000000000E+00

xcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

• The corresponding atomization energy is 0.1776 Ha = 4.833 eV;

• The interatomic distance is 1.4532 Bohr

• These are our final data for the local (spin) density approximation.

We have used ixc=1 . Other expressions for the local (spin) density approximation ixc=2, 3
... 7 are possible. The values 1, 2, 3 and 7 should give about the same results, since they all start
from the XC energy of the homogeneous electron gas, as determined by Quantum Monte Carlo
calculations. Other possibilities ixc = 4, 5, 6 are older local density functionals, that could not
rely on these data.

2.2.5 The use of the Generalized Gradient Approximation

We will use the Perdew–Burke–Ernzerhof functional, proposed in Phys. Rev. Lett. 77, 3865
(1996).

In principle, for GGA, one should use another pseudopotential than for LDA. However, for the
special case of Hydrogen, and in general pseudopotentials with a very small core (including only
the 1s orbital), pseudopotentials issued from the LDA and from the GGA are very similar.

So, we will not change our pseudopotential. This will save us lot of time, as we should not
redo an ecut convergence test (ecut is often characteristic of the pseudopotentials that are used in
a calculation).

Independently of the pseudopotential, an acell convergence test should not be done again, since
the vacuum is treated similarly in LDA or GGA.

So, our final values within GGA will be easily obtained, by setting ixc to 11 in the input file
t24.in. See ~ABINIT/Tutorial/t25.in for an example.

etotal11 -1.1621428502E+00
etotal12 -4.9869631857E-01

xcart11 -7.1203906739E-01 0.0000000000E+00 0.0000000000E+00
7.1203906739E-01 0.0000000000E+00 0.0000000000E+00

xcart12 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

• The corresponding atomization energy is 0.1647 Ha = 4.482 eV;

• The interatomic distance is 1.4241 Bohr;

20



CHAPTER 2. TUTORIAL

• These are our final data for the generalized gradient approximation.

Once more, here are the experimental data:

• bond length: 1.401 Bohr;

• atomization energy: 4.747 eV.

In GGA, we are within 2% of the experimental bond length, but 5% of the experimental
atomization energy. In LDA, we were within 4% of the experimental bond length, and within 2%
of the experimental atomization energy.

Do not forget that the typical accuracy of LDA and GGA varies with the class of materials
studied...

2.3 Lesson 3: Crystalline silicon

This lesson aims at showing you how to get the following physical properties, for an insulator:

• the total energy;

• the lattice parameter;

• the band structure (actually, the Kohn–Sham band structure).

You will learn about the use of k–points, as well as the smearing of the planewave kinetic
energy cut–off.

This lesson should take about 1 hour to be done.

2.3.1 Computing the total energy of silicon at fixed number of k–points

Before beginning, you might consider to work in a different subdirectory as for lesson 1 or lesson
2 . Why not “Work3”?

The file ~ABINIT/Tutorial/t3x.files lists the file names and root names. You can copy it
in the Work3 directory and change it as you did for the t1x.files and t2x.files files. You can
also copy the file ~ABINIT/Tutorial/t31.in in Work3. This is your input file. You should edit
it, read it carefully, have a look at the following “new” input variables, and their explanation:

• rprim;

• xred (used instead of xcart);

• kptopt, ngkpt, nshiftk, shiftk, kptrlatt (not easy ... take your time!);

• diemac (compared to isolated molecules, another value is used, while diemix has been sup-
pressed).

Note also the following: you will work at fixed ecut (=8Ha). It is implicit that in “real life”,
you should do a convergence test with respect to ecut... Here, a suitable ecut is given to you. It
will allow to obtain 0.2% relative accuracy on lattice parameters.

When you have read the input file, you can run the code, as usual (it will run a few seconds).
Then, read the output file, and note the total energy.

etotal -8.8662238960E+00

21



2.3. LESSON 3: CRYSTALLINE SILICON

2.3.2 Starting the convergence study with respect to k–points

There is of course a convergence study associated to the sampling of the Brillouin zone. You should
examine different grids, of increasing resolution. You might try the following series of grids:

ngkpt1 2 2 2
ngkpt2 4 4 4
ngkpt3 6 6 6
ngkpt4 8 8 8

However, the associated number of k–points in the irreducible Brillouin zone grows very fast.
It is

nkpt1 2
nkpt2 10
nkpt3 28
nkpt4 60

ABINIT computes this number of k–point, from the definition of the grid and the symmetries.
You might define an input nkpt value, in which case ABINIT will compare its computed value
with this input value. We take this opportunity to examine the behavior of ABINIT when a
problem is detected. Let’s suppose that with ngkpt1 4 4 4, one mentions nkpt1 2. The input file
~ABINIT/Tutorial/t32.in is an example. Do not forget to change t3x.files, if you are using
that file name. The message that you get at the end of the log file is:

inkpts : ERROR -
The input value of nkpt= 2, does not match
the number of k points generated by kptopt, ngkpt, shiftk,
ane the eventual symmetries, that is, nkpt= 10.
Action : change nkpt in your input file, or one of the other input variables.

This is a typical ABINIT error message. It announce clearly that you should use nkpt 10.
As the computation of nkpt for specific grids of k–points is not an easy task, while the even

more important selection of specific economical grids (the best ratio between the accuracy of the
integration in the Brillouin zone and the number of k–points) is more difficult, some help to the
user is provided by ABINIT. ABINIT is able to examine automatically different k–point grids, and
to propose the best grids for integration. This is described in the abinis_help file, see the input
variable prtkpt, and the associated characterization of the integral accuracy, described in kptrlen.
The generation of lists of k–point sets is done in different test cases, in the directory Test_v2.
You can directly have a look at the output files in ~ABINIT/Test_v2/Refs, the output files for
the tests 61 to 73.

When one begins the study of a new material, it is strongly advised to examine first the list of
k–points grids, and select (at least) three efficient ones, for the k–point convergence study. Do not
forget that the CPU time will be linearly proportional to the number of k–points to be treated:
using 10 k–points will take five more time than using 2 k–points. Even for a similar accuracy
of the Brillouin zone integration (about the same value of kptrlen), it might be easy to generate
a grid that will fold to 10 k in the irreducible Brillouin zone, as well as one that will fold to 2
k–points in the irreducible Brillouin zone. The latter is clearly to be preferred!

2.3.3 Actually performing the convergence study with respect to k–
points

In order to understand k–point grids, you should read the Monkhorst and Pack paper, Phys.
Rev. B 13, 5188 (1976) ... Well, maybe not immediately ... In the meantime, you can try the
above–mentioned convergence study.

The input file ~ABINIT/Tutorial/t33.in is an example, while ~ABINIT/Tutorial/Refs/t33.
out is a reference output file. In this output file, you should have a look at the echo of input

22



CHAPTER 2. TUTORIAL

variables. As you know, these are preprocessed, and, in particular, ngkpt and shiftk are used to
generate the list of k–points (kpt) and their weights (wtk). You should read the information about
kpt and wtk.

From the output file, here is the evolution of total energy per unit cell:

etotal1 -8.8662238960E+00
etotal2 -8.8724909739E+00
etotal3 -8.8726017429E+00
etotal4 -8.8726056405E+00

The difference between dataset 3 and dataset 4 is rather small. Even the dataset 2 gives an
accuracy of about 0.0001 Ha. So, our converged value for the total energy, at fixed acell, fixed
ecut, is −8.872 Ha.

2.3.4 Determination of the lattice parameters

The input variable “optcell” governs the automatic optimization of cell shape and volume. For
the automatic optimization of cell volume, use:

opcell 1
ionmov 3
ntime 10
dilatmx 1.05
ecutsm 0.5

You should read the indications about dilatmx and ecutsm. Do not test all the k–point grids,
only those with nkpt 2 and 10.

The input file ~ABINIT/Tutorial/t34.in is an example, while ~ABINIT/Tutorial/Refs/t34.
out is a reference output file.

This run might last a few minutes ...
You should obtain the following evolution of the lattice parameters:

acell1 1.0230001904E+01 1.0230001904E+01 1.0230001904E+01 Bohr
acell2 1.0216682464E+01 1.0216682464E+01 1.0216682464E+01 Bohr

with the following very small residual stresses:

strten1 -2.5365388633E-08 -2.5365388633E-08 -2.5365388633E-08
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

strten2 -5.3567080431E-08 -5.3567080431E-08 -5.3567080431E-08
0.0000000000E+00 0.0000000000E+00 0.0000000000E+00

The stress tensor is given in Hartree/Bohr3, and the order of the components is

11 22 33
23 13 12

There is only a 0.13% relative difference between acell1 and acell2. So, our converged LDA
value for Silicon, with the 14si.pspnc pseudopotential (see the t3x.files file) is 10.217 Bohr,
that is 5.407 Angstrom. The experimental value is 5.431 Angstrom at 25 degree Celsius, see R.
W. G. Wyckoff, Crystal structures, Ed. Wiley and sons, New–York (1963).

2.3.5 Computing the band structure

We fix the parameters acell to the theoretical value of 3 × 10.217, and we fix also the grid of
k–points (the 4× 4× 4 FCC grid, equivalent to a 8× 8× 8 Monkhorst–pack grid).

We will ask for 8 bands (4 valence and 4 conduction).

23



2.3. LESSON 3: CRYSTALLINE SILICON

A band structure can be computed by solving the Kohn–Sham equation for many different
k–points, along different lines of the Brillouin zone. The potential that enters the Kohn–Sham
must be derived from a previous self–consistent calculation, and will not vary during the scan of
different k–point lines.

Suppose that you want to make a L–Gamma–X–(U–)Gamma circuit, with 10, 12 and 17
divisions for each line (each segment has a different length in reciprocal space, and these divisions
give approximately the same distance between points along a line). The circuit will be obtained
easily by the following choice of segment end points:

L (1/2 0 0)
Gamma (0 0 0)
X (0 1/2 1/2)
Gamma (1 1 1)

Note:

1. the last Gamma point is in another cell of the reciprocal space than the first one, this choice
allows to construct the X–U–Gamma line easily;

2. the k–points are specified using reduced coordinates — in agreement with the input setting
of the primitive 2–atom unit cell — in standard textbooks, you will often find the L, Gamma
or X point given in coordinates of the conventional 8–atom cell: the above–mentioned circuit
is then (1/2 1/2 1/2)–(0 0 0)–(1 0 0)–(1 1 1), but such coordinates cannot be used with the
2–atom cell.

So, you should set up in your input file, for the first dataset, a usual SCF calculation in which
you output the density (prtden 1 ), and, for the second dataset:

• fix iscf to −2, to make a non–self–consistent calculation;

• define getden −1, to take the output density of dataset 1;

• set nband to 8;

• set kptopt to −3, to define three segments in the Brillouin Zone;

• set ndivk to 10 12 17 (this means a circuit defined by 4 points, with 10 divisions of the first
segment, 12 divisions of the second, 17 divisions of the third);

• set kptbounds to

0.5 0.0 0.0 # L point
0.0 0.0 0.0 # Gamma point
0.0 0.5 0.5 # X point
1.0 1.0 1.0 # Gamma point in another cell.

• set enunit to 1, in order to have eigenenergies in eV;

• the only tolerance criterion admitted for non–self–consistent calculations is tolwfr. You
should set it to 1.0× 10−10 (or so), and suppress toldfe.

The input file ~ABINIT/Tutorial/t35.in is an example, while ~ABINIT/Tutorial/Refs/t35.
out is a reference output file.

You should find the band structure starting at (second dataset):

Eigenvalues ( eV ) for nkpt= 40 k points:
kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.5000 0.0000 0.0000 (reduced coord)
-3.78987 -1.16032 4.69394 4.69394 7.38389 9.23579 9.23579 13.45363
kpt# 2, nband= 8, wtk= 1.00000, kpt= 0.4500 0.0000 0.0000 (reduced coord)

24



CHAPTER 2. TUTORIAL

-3.92925 -0.95943 4.71018 4.71018 7.40286 9.25271 9.25271 13.48581
kpt# 3, nband= 8, wtk= 1.00000, kpt= 0.4000 0.0000 0.0000 (reduced coord)
-4.25584 -0.44579 4.76451 4.76451 7.46440 9.30899 9.30899 13.57381
kpt# 4, nband= 8, wtk= 1.00000, kpt= 0.3500 0.0000 0.0000 (reduced coord)
-4.64158 0.24736 4.85456 4.85456 7.56450 9.38020 9.38020 13.64227
....

One needs a graphical tool to represent all these data ... (For the MAPR 2451 lecture: try
with MATLAB)

Even without a graphical tool we will have a quick look at the values at L, Gamma, X and
Gamma again:

kpt# 1, nband= 8, wtk= 1.00000, kpt= 0.5000 0.0000 0.0000 (reduced coord)
-3.78987 -1.16032 4.69394 4.69394 7.38389 9.23579 9.23579 13.45363

kpt# 11, nband= 8, wtk= 1.00000, kpt= 0.0000 0.0000 0.0000 (reduced coord)
-6.17102 5.91515 5.91515 5.91515 8.44524 8.44524 8.44524 9.17125

kpt# 23, nband= 8, wtk= 1.00000, kpt= 0.0000 0.5000 0.5000 (reduced coord)
-1.96598 -1.96598 3.00347 3.00347 6.50928 6.50928 15.94976 16.44101

kpt# 40, nband= 8, wtk= 1.00000, kpt= 1.0000 1.0000 1.0000 (reduced coord)
-6.17102 5.91515 5.91515 5.91515 8.44524 8.44524 8.44524 9.17125

The last gamma is exactly equivalent to the first gamma. It can be checked that the top of
the valence band is obtained at Gamma (=15.56202 eV). The width of the valence band is 12.09
eV, the lowest unoccupied state at X is 0.594 eV higher than the top of the valence band, at
Gamma. The Si is described as an indirect band gap material (this is correct), with a band–gap of
about 0.594 eV (this is quantitatively quite wrong: the experimental value 1.17 eV is at 25 degree
Celsius). The minimum of the conduction band is even slightly displaced with respect to X, see kpt
# 21 . This underestimation of the band gap is well–known (the famous DFT band–gap problem).
In order to obtain correct band gaps, you need to go beyond the Kohn–Sham Density Functional
Theory: use the GW approximation. This is described in the sixth lesson of the tutorial.

For experimental data and band structure representation, see M. L. Cohen and J. R. Che-
likowski, Electronic structure and optical properties of semiconductors, Springer–Verlag New–York
(1988).

There is a subtlety that is worth to comment about. In non–self–consistent calculations,
like those performed in the present band structure calculation, with iscf=−2, not all bands are
converged within the tolerance tolwfr. Indeed, the two upper bands (by default) have not been
taken into account to apply this convergence criterion: they constitute a “buffer”. The number of
such “buffer” bands is governed by the input variable nbdbuf.

It can happen that the highest (or two highest) band(s), if not separated by a gap from non–
treated bands, can exhibit a very slow convergence rate. This buffer allows to achieve convergence
of “important”, non–buffer bands. In the present case, 6 bands have been converged with a residual
better than tolwfr, while the two upper bands are less converged (still sufficiently for graphical
representation of the band structure). In order to achieve the same convergence for all 8 bands,
it is advised to use nband=10 (that is, 8 + 2).

2.4 Lesson 4: Aluminum, the bulk and the surface

This lesson aims at showing how to get the following physical properties, for a metal, and for a
surface:

• the total energy;

25



2.4. LESSON 4: ALUMINUM, THE BULK AND THE SURFACE

• the lattice parameter;

• the relaxation of surface atoms;

• the surface energy.

You will learn about the smearing of the Brillouin zone integration, and also a bit about
preconditioning the SCF cycle.

This lesson should take about 1 hour and 30 minutes to be done.

2.4.1 Computing the total energy and lattice parameters of aluminum
for a fixed smearing and number of k–points.

Before beginning, you might consider to work in a different subdirectory as for lesson 1, 2 or 3 .
Why not “Work4”?

The file ~ABINIT/Tutorial/t4x.files lists the file names and root names. You can copy it
in the Work4 directory (and change it, as usual). You can also copy the file ~ABINIT/Tutorial/
t41.in in Work4. This is your input file. You should edit it, read it carefully, and have a look at
the following “new” input variables, and their explanation:

• occopt ;

• tsmear.

Note also the following:

1. You will work at fixed ecut (=6Ha). It is implicit that in “real life”, you should do a
convergence test with respect to ecut ... Here, a suitable ecut is given to you. It will
allow to obtain 0.2% relative accuracy on lattice parameters. Note that this is the softer
pseudopotential of those that we have used until now: the 01h.pspgth for H needed 30 Ha
(it was rather hard), the 14si.pspnc for Si needed 8 Ha.

2. The input variable diemac has been suppressed. Aluminum is a metal, and the default is
taylored for that case.

When you have read the input file, you can run the code, as usual (it will take a few seconds).
Then, read the output file quietly. You should note that the Fermi energy and occupation numbers
have been computed automatically:

Fermi energy (hartree) = 0.26800
Eigenvalues (hartree) for nkpt= 2 k points:
kpt# 1, nband= 3, wtk= 0.75000, kpt= -0.2500 0.5000 0.0000 (reduced coord)
0.09391 0.25391 0.41846

occupation numbers for kpt# 1
2.00003 1.33306 0.00014

kpt# 2, nband= 3, wtk= 0.25000, kpt= -0.2500 0.0000 0.0000 (reduced coord)
-0.07058 0.41033 0.68787

occupation numbers for kpt# 2
2.00000 0.00030 0.00000

You should also note that the components of the total energy include an entropy term:

Eight components of total free energy (hartree) are
kinetic= 8.70148725738375E-01 Hartree= 3.84240572509002E-03

xc=-8.08093663953667E-01 loc psp= 8.21205082511040E-02
nl psp = 4.52424282437438E-01 pspcore= 3.78200676875296E-02
-kT*entropy =-7.99762559838938E-03 (internal energy=-2.08996839059198E+00 )
Ewald =-2.72823071647785E+00 resulting in Etotal=-2.09796601619037E+00 hartree
Also Etotal= -5.70885576267268E+01 eV ; Eeig (band energy)= 3.5951203776E-01 Ha

26



CHAPTER 2. TUTORIAL

2.4.2 The convergence study with respect to k–points

There is of course a convergence study associated to the sampling of the Brillouin zone. You should
examine different grids, of increasing resolution. You might try the following series of grids:

ngkpt1 2 2 2
ngkpt2 4 4 4
ngkpt3 6 6 6
ngkpt4 8 8 8

with the associated nkpt :

nkpt1 2
nkpt2 10
nkpt3 28
nkpt4 60

The input file ~ABINIT/Tutorial/t42.in is an example, while ~ABINIT/Tutorial/Refs/t42.
out is a reference output file. The run might take more than one minute.

You will see that, FOR THE PARTICULAR VALUE OF tsmear=0.05 Ha, the lattice param-
eter is already converged with nkpt=10 :

acell1 7.5623662498E+00 7.5623662498E+00 7.5623662498E+00 Bohr
acell2 7.5084285443E+00 7.5084285443E+00 7.5084285443E+00 Bohr
acell3 7.5013992940E+00 7.5013992940E+00 7.5013992940E+00 Bohr
acell4 7.4990383260E+00 7.4990383260E+00 7.4990383260E+00 Bohr

Note that there is usually a STRONG cross–convergence effect between the number of k–points
and the value of the broadening, tsmear. The right procedure is: for each value of tsmear, get the
convergence with respect with the number of k–points, then to compare the k–point converged
values for different values of tsmear.

In what follows, we will restrict ourselves to the grids with nkpt=2, 10 and 28.

2.4.3 The convergence study with respect to both number of k–points
AND broadening factor (tsmear)

The theoretical convergence rate for tsmear ending to 0, in the case of occopt=4, is quartic. This
is obtained in the hypothesis of infinitely dense k–point grid. We will check the evolution of
acell as a function of tsmear, for the following values of tsmear : 0.01, 0.02, 0.03 and 0.04. Use
the double–loop capability of the multi–dataset mode, with the tsmear changes in the INNER
loop. This will saves CPU time, as the wavefunctions of the previous dataset will be excellent (no
transfer to different k–points).

The input file ~ABINIT/Tutorial/t43.in is an example, while ~ABINIT/Tutorial/Refs/t43.
out is a reference output file.

From the output file, here is the evolution of acell :

acell11 7.5622298688E+00 7.5622298688E+00 7.5622298688E+00 Bohr
acell12 7.5622412743E+00 7.5622412743E+00 7.5622412743E+00 Bohr
acell13 7.5622412745E+00 7.5622412745E+00 7.5622412745E+00 Bohr
acell14 7.5622427067E+00 7.5622427067E+00 7.5622427067E+00 Bohr
acell21 7.5071087625E+00 7.5071087625E+00 7.5071087625E+00 Bohr
acell22 7.5071970473E+00 7.5071970473E+00 7.5071970473E+00 Bohr
acell23 7.5032517079E+00 7.5032517079E+00 7.5032517079E+00 Bohr
acell24 7.5055911048E+00 7.5055911048E+00 7.5055911048E+00 Bohr
acell31 7.4958511018E+00 7.4958511018E+00 7.4958511018E+00 Bohr
acell32 7.4952121945E+00 7.4952121945E+00 7.4952121945E+00 Bohr
acell33 7.4965135656E+00 7.4965135656E+00 7.4965135656E+00 Bohr
acell34 7.4990025833E+00 7.4990025833E+00 7.4990025833E+00 Bohr

27



2.4. LESSON 4: ALUMINUM, THE BULK AND THE SURFACE

These data should be analyzed properly.
For tsmear=0.01, the converged value, contained in acell31, must be compared to acell11 and

acell21 : between acell21 and acell31, the difference is below 0.2%. acell31 can be considered to be
converged with respect to the number of k–points, at fixed tsmear. This tsmear being the lowest
one, it is usually the most difficult to converge, and the values acell31,32,33 and 34 are indeed
well–converged with respect to the k–point number.

The use of the largest tsmear(=0.04), giving acell34, induces only a small error in the lattice
parameter. For that particular value of tsmear, one can use the second k–point grid, giving acell24.

So to summarize:
We can choose to work with a 10 k–point grid in the irreducible Brillouin zone, and the

associated tsmear = 0.04, with less than 0.1% error on the lattice parameter.
NOTE that this error due to the Brillouin zone sampling could add to the error due to the

choice of ecut (that was mentioned previously to be on the order of 0.2%).
In what follows, we will stick to these values of ecut and tsmear, and try to use k–point grids

with a similar resolution.
Our final value for the aluminum lattice parameter, in the LDA, using the 13al.981214.fhi

pseudopotential, is thus 7.5056 Bohr, that is 3.9718 Å. The experimental value at 25 degree Celsius
is 4.04958 Å.

The associated total energy and accuracy can be deduced from

etotal11 -2.0915880134E+00
etotal12 -2.0931821220E+00
etotal13 -2.0947762307E+00
etotal14 -2.0963703493E+00
etotal21 -2.0969479910E+00
etotal22 -2.0975288692E+00
etotal23 -2.0977992413E+00
etotal24 -2.0979739819E+00
etotal31 -2.0983273553E+00
etotal32 -2.0982967240E+00
etotal33 -2.0983057844E+00
etotal34 -2.0983969839E+00

etotal24 is -2.0979739819E+00 Ha, with an accuracy of 0.0005 Ha.

2.4.4 Determination of the surface energy of aluminum (100): changing
the orientation of the unit cell

In order to study the Aluminum (100) surface, we will have to set up a supercell representing a
slab. This supercell should be chosen as to be compatible with the primitive surface unit cell.

The corresponding directions are [-1 1 0] and [1 1 0]. The direction perpendicular to the surface
is [0 0 1]. There is no primitive cell of bulk aluminum based on these vectors, but a doubled cell.
We will first compute the total energy associated with this doubled cell. This is not strictly needed,
but it is a valuable intermediate step towards the study of the surface.

You might start from t43.in.
You have to change rprim. Still, try to keep acell at the values of bulk aluminum that were

determined previously. But it is not all: the most difficult part in the passage to this doubled cell
is the definition of the k–point grid. Of course, one could just take a homogeneous simple cubic
grid of k–points, but this will not correspond exactly to the k–point grid used in the primitive cell
in t43.in. This would not be a big problem, but you would miss some error cancellation.

The answer to this problem is given in the input file ~ABINIT/Tutorial/t44.in. The proce-
dure to do the exact translation of the k–point grid will not be explained here (sorry for this).
If you do not see how to do it, just use homogeneous simple cubic grids, with about the same
resolution as for the primitive cell case. There is a simple rule to estimate ROUGHLY whether

28



CHAPTER 2. TUTORIAL

two grids for different cells have the same resolution: simply multiply the linear dimensions of the
k–point grids, by the number of sublattices, by the number of atoms in the cell. For example, the
corresponding product for the usual 10 k–point grid is 4x4x4 x 4 x 1 = 256 . In the file t44.in,
one has 4x4x4 x 2 x 2 = 256 . The grids of k–points should not be too anisotropic for this rough
estimation to be valid.

Note also the input variables rprim and chkprim in this input file.
So, you run t44.in (only a few seconds, the reference file is ~ABINIT/Tutorial/Refs/t44.

out), and you find the following total energy:

etotal -4.1962972596E+00

It is not exactly twice the total energy for the primitive cell, mentioned above, but the difference
is less than 0.0005 Ha. It is due to the different FFT grids used in the two runs, and affect the
exchange–correlation energy. These grids are always homogeneous primitive 3D grids, so that
changing the orientation of the lattice will give mutually incompatible lattices. Increasing the size
of the FFT grid would improve the agreement.

2.4.5 Determination of the surface energy: a (3 aluminum layer + 1
vacuum layer) slab calculation

We will first compute the total energy associated with only three layers of aluminum, separated
by only one layer of vacuum. This is kind of a minimal slab:

• one surface layer;

• one “bulk” layer;

• one surface layer;

• one vacuum layer;

• ...

It is convenient to take the vacuum region as having a multiple of the width of the aluminum
layers, but this is not mandatory. The supercell to use is the double of the previous cell (that had
two layers of Aluminum atoms along the [0 0 1] direction). Of course, the relaxation of the surface
might give an important contribution to the total energy.

You should start from t44.in.
You have to modify rprim (double the cell along [0 0 1]), the atomic positions, as well as the

k–point mesh. For the latter, it is supposed that the electrons cannot propagate from one slab to
its image in the [0 0 1] direction, so that the kz component of the special k–points can be taken 0:
only one layer of k–points is needed along the z–direction. You should also allow the relaxation
of atomic positions, but not the relaxation of lattice parameters (the lattice parameters along x
or y must be considered fixed to the bulk value, while, for the z direction, there is no interest to
allow the vacuum region to collapse!

The input file ~ABINIT/Tutorial/t45.in is an example, while ~ABINIT/Tutorial/Refs/t45.
out is a reference output file. The run might last one minute.

The total energy after the first SCF cycle, when the atomic positions are equal to their starting
values, is:

ETOT 7 -6.2619731934699

Note that the total energy of three aluminum atoms in the bulk, (from section 4.3, etotal24 )
is

-6.293922 Ha

So that the non–relaxed surface energy, per surface unit cell (there are two surfaces in our
simulation cell!) is

29



2.4. LESSON 4: ALUMINUM, THE BULK AND THE SURFACE

0.015975 Ha = 0.435 eV .

The total energy after the Broyden relaxation is:

etotal -6.2622233982E+00

so that the relaxed surface energy, per surface unit cell is

0.015849 Ha = 0.431 eV .

It seems that the relaxation energy is very small, compared to the surface energy, but we need
to do the convergence studies.

2.4.6 Determination of the surface energy: increasing the number of
vacuum layers

One should now increase the number of vacuum layers: 2 and 3 layers instead of only 1. It is
preferable to define atomic positions in cartesian coordinates. The same coordinates will work for
both 2 and 3 vacuum layers, while this is not the case for reduced coordinates, as the cell size
increases.

The input file ~ABINIT/Tutorial/t46.in is an example input file, while ~ABINIT/Tutorial/
Refs/t46.out is a reference output file. The run might take a few minutes ...

In the Broyden step 0 of the first dataset, you will notice the WARNING:

scprqt: WARNING -
nstep= 10 was not enough SCF cycles to converge;
maximum force difference= 1.716E-04 exceeds toldff= 5.000E-05

The SCF convergence is indeed getting more difficult. This is because the default preconditioner
(see the notice of the input variable dielng) is not very good for the metal+vacuum case.

For the interpretation of the present run, this is not critical, as the convergence criterion was
close of being fulfilled, but one should keep this in mind, as you will see ...

For the 2 vacuum layer case, one has the non–relaxed total energy:

ETOT 10 -6.2538519290781

(that is inaccurate at the 1.0d-4Ha level) giving the unrelaxed surface energy

0.0200 Ha = 0.544 eV ;

and for the relaxed case:

etotal1 -6.2546977224E+00

(this one is converged to the required level) giving the relaxed surface energy

0.0196 Ha = 0.533 eV

Note that the difference between unrelaxed and relaxed case is a bit larger than in the case of
one vacuum layer. This is because there was some interaction between slabs of different supercells.

For the 3 vacuum layer case, the self–consistency problem becomes even more severe than with
2 vacuum layers! The Broyden steps 0 and 1 are NOT sufficiently converged (one might set nstep
to a larger value, but the best is to change the preconditioner, as described below)...

However, for the Broyden steps number 2 and beyond, because one takes advantage of the
previous wavefunctions, a sufficient convergence is reached. The total energy, in the relaxed case,
is:

total2 -6.2559056529E+00

giving the relaxed surface energy 0.0190 Ha = 0.515 eV. There is a rather small 0.018 eV difference
with the 2 vacuum layer case.

For the next run, we will keep the 2 vacuum layer case, and we know that the accuracy of
the coming calculation cannot be better than 0.016 eV. One might investigate the 4 vacuum layer
case, but this is not worth, in the present tutorial ...

30



CHAPTER 2. TUTORIAL

2.4.7 Determination of the surface energy: increasing the number of
aluminum layers

One should now increase the number of aluminum layers, while keeping 2 vacuum layers. We will
consider 4 and 5 aluminum layers. This is rather straightforward to set up, but the problem with
the preconditioner is more embarrassing. One could use an effective dielectric constant of about
3 or 5, with a rather small mixing coefficient, on the order of 0.2. However, there is also another
possibility, using an estimation of the dielectric matrix governed by iprcel=45. For comparison
with the previous treatment of SCF, one can recompute the result with 3 aluminum layers.

The input file ~ABINIT/Tutorial/t47.in is an example, while ~ABINIT/Tutorial/Refs/t47.
out is a reference output file. This run might take a few minutes, and is the longer of the tutorial.
You should start it now.

You can monitor its evolution by editing from time to time the t47_STATUS file that the
code updates regularly. The status file, that refer to the skeleton of the code, is described in
the ~ABINIT/Infos/Notes_for_coding/programmer_guide. You might take advantage of the
time of the run to explore the files contained in the ~ABINIT/Infos directory and the ~ABINIT/
Infos/Notes_for_coding directory. The README files provided interesting entry points in the
documentation of the code.

Coming back to the file t47.out ...
You will notice that the SCF convergence is now excellent, for all the cases (3, 4 or 5 metal

layers).
For the 3 aluminum layer case, one has the non–relaxed total energy:

ETOT 7 -6.2539524354404

(this quantity is converged, unlike in test 4.6) giving the unrelaxed surface energy 0.0200 Ha =
0.544 eV; and for the relaxed case:

etotal1 -6.2547004716E+00

(by contrast the difference with test 4.6 is less than 1 microHa) giving the relaxed surface energy
0.0196 Ha = 0.533 eV.

For the 4 aluminum layer case, one has the non–relaxed total energy:

ETOT 8 -8.3546873347493

giving the unrelaxed surface energy 0.0186Ha = 0.506 eV; and for the relaxed case:

etotal2 -8.3565574035E+00

giving the relaxed surface energy 0.0183 Ha = 0.498 eV.
For the 5 aluminum layer case, one has the non–relaxed total energy:

ETOT 8 -10.453642176501

giving the unrelaxed surface energy 0.0183Ha = 0.498 eV; and for the relaxed case:

etotal3 -1.0454163549E+01

giving the relaxed surface energy 0.0180 Ha = 0.490 eV.
The relative difference in the surface energy of the 4 and 5 layer cases is on the order of 1.5%.
In the framework of this tutorial, we will not pursue this investigation, which is a simple

application of the concepts already explored.
Just for your information, and as an additional warning, when the work accomplished until

now is completed with 6 and 7 layers without relaxation (see ~ABINIT/Tutorial/t48.in and

31



2.5. LESSON 5: DYNAMICAL AND DIELECTRIC PROPERTIES OF ALAS

~ABINIT/Tutorial/Refs/t48.out where 5, 6 and 7 layers are treated), this non–relaxed energy

surface energy behaves as follows:

number of aluminum layers surface energy
3 0.544 eV
4 0.506 eV
5 0.498 eV
6 0.449 eV
7 0.463 eV

So, the surface energy convergence is rather difficult to reach.
Our values, with a 4x4x1 grid, a smearing of 0.04 Ha, a kinetic energy cut–off of 6 Ha, the

13al.981214.fhi pseudopotential, still oscillate between 0.45 eV and 0.51 eV.
An error on the order of 0.016 eV is due to the thin vacuum layer. Other sources of errors

might have to be rechecked, seeing the kind of accuracy that is needed.
Experimental data give a surface energy around 0.55 eV (sorry, the reference is to be provided).

2.5 Lesson 5: Dynamical and dielectric properties of AlAs

This lesson aims at showing how to get the following physical properties, for an insulator:

• the phonon frequencies and eigenvectors at Gamma;

• the dielectric constant;

• the Born effective charges;

• the LO–TO splitting;

• the phonon frequencies and eigenvectors at other q–points in the Brillouin Zone;

• the interatomic force constants (not yet);

• the phonon band structure from interatomic force constants (not yet);

• associated thermodynamical properties (not yet).

You will learn to use of response–function features of ABINIT. In a future version, you will
learn the use of the associated codes Mrgddb and Anaddb.

This lesson should take about (to be provided) hours to be done.

2.5.1 The ground–state geometry of AlAs

Before beginning, you might consider to work in a different subdirectory as for the other lessons.
Why not “Work5”?

The file ~ABINIT/Tutorial/t5x.files lists the file names and root names. You can copy it
in the Work5 directory (and change it, as usual). Note that two pseudopotentials are mentioned
in this “files” file: one for the Aluminum atom, and one for the Arsenic atom. The first to be
mentioned, for Al, will define the first type of atom. The second to be mentioned, for As, will
define the second type of atom. It is the first time that you encounter this situation in the tutorials.

You can also copy the file ~ABINIT/Tutorial/t51.in in Work5. This is your input file. You
should edit it, read it carefully, and, because of the use of two types of atoms, have a look at the
following input variables:

• ntypat ;

• typat.

32



CHAPTER 2. TUTORIAL

Note that the value of tolvrs is rather stringent. This is because the wavefunctions determined
by the present run will be used later as starting point of the response–function calculation.

You will work at fixed ecut (=3Ha) and k–point grid, defined by kptrlatt (the 4x4x4 Monkhorst–
Pack grid). It is implicit that in “real life”, you should do a convergence test with respect to both
convergence parameters. We postpone the discussion of the accuracy of these choices and the
choice of pseudopotential to the last section of this tutorial (LINK TO BE GIVEN). They give
acceptable results, not very accurate, but, more important, the speed is reasonable for a tutorial.

You should make the run (a dozen of second on a PIII at 450 MHz), and obtain the following
value for the energy, in the final echo section:

etotal -9.7626837450E+00

However, we will rely later on a more accurate (more digits) value of this total energy, that
can be found about a dozen of lines before this final echo:

Ewald =-8.47989583509473E+00 resulting in Etotal=-9.76268374500102E+00 hartree

The output file also mention that the forces on both atoms vanish.
The run that you just made will be considered as defining a ground–state configuration, on

top of which response functions will be computed. The main output of this ground–state run is
the wavefunction file t51_oWFK, that you can already rename as t51_iWFK. Indeed, it will be used
in the next runs, as an input file. So, in the corresponding “files” file, third line, pay attention
to specify “t51 i”, even if you change the root name for output files (fourth line) to “t52 o” or
“t53 o” ...

2.5.2 Frozen–phonon calculation of a second derivative of the total en-
ergy

We will now aim at computing the second derivative of the total energy with respect to an atomic
displacement by different means. For that purpose, you must first read section 0 and the first
paragraph of section 1 of the respfn_help file (the auxiliary help file, that deals specifically with
the response function features).

We will explain later, in more detail, the signification of the different input parameters intro-
duced in section 1 of the respfn_help file.

For now, in order to be able to perform a direct comparison with the result of a response–
function calculation, we choose as a perturbation the displacement of the Al atom along the first
axis of the reduced coordinates.

You can copy the file ~ABINIT/Tutorial/t52.in in Work5. This is your input file. You should
edit it and briefly look at the two changes with respect to the file ~ABINIT/Tutorial/t51.in: the
change of xred, and the reading of the wavefunction file, using the irdwfk input variable. Then,
you can make the run. The symmetry is lowered with respect to the ground–state geometry, so
that the number of k–points increases a lot, and of course, the CPU time (about one minute on a
PIII 450 MHz).

From this run, it is possible to get the values of the total energy, and the value of the gradient
of the total energy with respect to change of reduced coordinate:

rms dE/dt= 3.5517E-03; max dE/dt= 5.0079E-03; dE/dt below (all hartree)
1 0.005007930232 0.002526304574 0.002526304574
2 -0.005007868293 -0.002526274885 -0.002526274885

...
Ewald =-8.47988991313938E+00 resulting in Etotal=-9.76268124105590E+00 hartree

The change of reduced coordinate of the Al atom along the first axis was rather small (1/1000),
and we can make an estimate of the second derivative of the total energy with respect to the reduced
coordinate thanks to finite–difference formulas.

33



2.5. LESSON 5: DYNAMICAL AND DIELECTRIC PROPERTIES OF ALAS

We start first from the total energy difference. The total energy is symmetric with re-
spect to that perturbation, so that it has no linear term. The difference between the ground–
state value (-9.76268374500102E+00 hartree) of the previous run, and the perturbed value
(-9.76268124105590E+00 hartree) of the present one, is thus one half of the square of the co-
ordinate change (1/1000) times the 2DTE. From these number, the 2DTE is 5.00791024 Hartree.

Alternatively, we can start from the reduced gradients. The value of the reduced gradient with
respect to a displacement of the Al atom along the first reduced axis is 0.005007930232 (Hartree).
At first order, this quantity is the product of the 2DTE by the reduced coordinate difference. The
estimate of the 2DTE is thus 5.007930232 Hartree. The agreement with the other estimate is
rather good (2.10−5 Hartree).

However, it is possible to do much better, thanks to the use of a higher–order finite–difference
formula. For this purpose, one can perform another calculation, in which the change of reduced
coordinate along the first axis is 0.002, instead of 0.001. The doubling of the perturbation allows
for a rather simple higher–order estimation, as we will see later. The results of this calculation
are as follows:

rms dE/dt= 7.1249E-03; max dE/dt= 1.0016E-02; dE/dt below (all hartree)
1 0.010016299779 0.005097509981 0.005097509981
2 -0.010016176675 -0.005097455174 -0.005097455174

...
Ewald =-8.47987214716789E+00 resulting in Etotal=-9.76267372899697E+00 hartree

From these data, taking into account that the perturbation was twice stronger, the same
procedure than above leads to the values 5.00800270 Hartree (from finite difference of energy)
and 5.009149889 Hartree (from finite difference of forces, the value 0.010016299779 has to be
multiplied by 1000/2). The combination of these data with the previous estimate can be done
thanks to an higher–order finite–difference formula, in which the difference of estimations (the
largest perturbation minus the smallest one) is divided by three, and then subtracted from the
smallest estimation. As far as the total–energy estimation is concerned, the difference is 0.0001104
Ha, which divided by three, and subtracted from 5.00789230 Hartree, gives 5.0078555 Hartree.
The same higher–order procedure for force estimates gives 5.0078552 Hartree. So, the agreement
between total–energy estimate and force estimate of the 2DTE can be observed up to the 7th
digit, inclusive.

Before comparing this result with the 2DTE directly computed from the response–function
capabilities of ABINIT, a last comment is in order. One can observe that the action–reaction law
is fulfilled only approximately by the system. Indeed, the force created on the second atom, should
be exactly equal in magnitude to the force on the first atom. The values of dE/dt, mentioned
above, for example for the doubled displacement:

rms dE/dt= 7.1249E-03; max dE/dt= 1.0016E-02; dE/dt below (all hartree)
1 0.010016299779 0.005097509981 0.005097509981
2 -0.010016176675 -0.005097455174 -0.005097455174

show a small, but non–negligible difference between the two atoms. Actually, the forces should
cancel each other exactly if the translation symmetry were perfect. This is not the case, but
the breaking of this symmetry can be shown to arise only from the presence of the exchange–
correlation grid of points. This grid does not move when atoms are displaced, and so there is
a very small variation of the total energy when the system is moved as a whole. It is easy to
restore the action–reaction law, by subtracting from every force component the mean of the forces
on all atoms. This is actually done when the gradient with respect to reduced coordinates are
transformed into forces, and specified in Cartesian coordinates, as can be seen in the output file
for the small displacement:

cartesian forces (hartree/bohr) at end:
1 -0.00000421123276 -0.00047199792687 -0.00047199792687
2 0.00000421123276 0.00047199792687 0.00047199792687

34



CHAPTER 2. TUTORIAL

This effect will be seen also at the level of 2DTE. The so–called “acoustic sum rule”, imposing
that the frequency of three modes (called acoustic modes) tend to zero with vanishing wavevector,
will also be slightly broken. In this case also, it will be rather easy to reimpose the acoustic sum
rule. In any case, taking a finer XC grid will allow to reduce this effect.

2.5.3 Response–function calculation of a second derivative of the total
energy

We now compute the second derivative of the total energy with respect to the same atomic dis-
placement, using the response–function capabilities of ABINIT.

You can copy the file ~ABINIT/Tutorial/t53.in in Work5. This is your input file. You should
edit it. The changes with respect to the file ~ABINIT/Tutorial/t51.in are all gathered in the
first part of this file, before

#######################################################################
#Common input variables

Accordingly, you should get familiarized with the new input variables: rfphon, rfatpol, rfdir.
Then, pay attention to the special use of the kptopt input variable. It will be explained in more
detail later.

When you have understood the purpose of the input variable values specified before the “Com-
mon input variables” section, you can make the code run. It takes less than one minute on a PIII
450MHz.

Then, we need to analyze the different output files. For that purpose, you should read the
content of the section 6 of the respfn_help file. Read it quickly, as we will come back to the most
important points hereafter.

ABINIT has created four different files:

• t53.log (the log file);

• t53.out (the output file);

• t53o_1WF1 (the 1st–order wavefunction file);

• t53o_DDB (the derivative database).

Let us have a look at the output file. You can follow the description provided in the section
6.2 of the respfn_help file. You should be able to find the place where the iterations for the
minimization (with respect to the unique perturbation) take place:

iter 2DEtotal(Ha) deltaE(Ha) residm vres2
ETOT 1 6.5156051312863 -1.464E+01 1.146E-02 1.947E+02
ETOT 2 5.0216331638978 -1.494E+00 9.267E-04 2.027E+00
ETOT 3 5.0082678671217 -1.337E-02 4.772E-06 7.929E-02
ETOT 4 5.0078677958105 -4.001E-04 1.980E-07 2.712E-03
ETOT 5 5.0078558860285 -1.191E-05 6.103E-09 5.074E-05
ETOT 6 5.0078557520180 -1.340E-07 1.258E-10 9.613E-06
ETOT 7 5.0078557017091 -5.031E-08 2.768E-11 3.841E-07
ETOT 8 5.0078557001188 -1.590E-09 2.983E-12 6.089E-09

From these data, you can see that the 2DTE determined by the response–function technique is
in excellent agreement with the higher–order finite–difference formula for the 2DTE, determined
in the previous section: 5.0078555 Hartree from the energy differences, and 5.0078552 Hartree
from the force differences.

Now, you can read the remaining of the section 6.2 of the respfn_help file. Then, you should
also edit the t53o_DDB file, and read the corresponding section 6.4 of the respfn_help file.

Finally, the excellent agreement between the finite–difference formula and the response–function
approach calls for some accuracy considerations. These can be found in section 7 of the respfn_
help file.

35



2.5. LESSON 5: DYNAMICAL AND DIELECTRIC PROPERTIES OF ALAS

2.5.4 Response–function calculation of the dynamical matrix at Gamma

We are now in the position to compute the full dynamical matrix at Gamma (q = 0). You can
copy the file ~ABINIT/Tutorial/t54.in in Work5. This is your input file. You should edit it.
As for test 53, the changes with respect to the file ~ABINIT/Tutorial/t51.in are all gathered in
the first part of this file. Moreover, the changes with respect to t53.in concern only the input
variables rfatpol, and rfdir. Namely, all the atoms will be displaced, in all the directions.

There are six perturbations to consider. So, one might think that the CPU time will raise ac-
cordingly. This is not true, as ABINIT is able to determine which perturbations are the symmetric
of another perturbation, see section section 3 of the respfn_help file.

Now, you can make the run. It is a bit longer than one minute on a PIII at 450MHz. You edit
the file t54.out, and notice that the response to two perturbations were computed explicitly, while
the response to the other four could be deduced by using the symmetries. Nothing mysterious:
one of the two irreducible perturbations is for the Al atom, placed in a rather symmetric local
site, and the other perturbation is for the As atom.

The phonon frequencies, obtained by diagonalizing the dynamical matrix (where the atomic
masses have been taken into account, see amu), are given as follows:

Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :

2.586632E-06 2.590723E-06 2.614440E-06 1.568560E-03 1.568560E-03
1.568560E-03

Phonon frequencies in cm-1 :
- 5.677000E-01 5.685980E-01 5.738033E-01 3.442590E+02 3.442590E+02
- 3.442590E+02

You might wonder about the dash sign present in the first column of the two lines giving
the frequencies in cm−1. The first column of the main ABINIT output files is always dedicated
to signs needed to automatic treat the comparison with respect to reference files. Except if you
become a ABINIT developer, you should ignore these signs. In the present case, they should not
be interpreted as a minus sign for the floating numbers that follow them.

There is a good news about this result, and a bad news. The good news is that there are indeed
three acoustic mode, with frequency rather close to zero (less than 1 cm−1, which is rather good!).
The bad news comes when the three other frequencies are compared with experimental results, or
other theoretical results. Indeed, in the present run, one obtains three degenerate modes, while
there should be a (2+1) splitting. This can be seen in the paper “Ab initio calculation of phonon
dispersions in semiconductors”, by P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys.
Rev. B 43, 7231 (1991) , especially Fig. 2.

Actually, we have forgotten to take into account the coupling between atomic displacements
and the homogeneous electric field, that exists in the case of polar insulators, for so–called “Lon-
gitudinal Optic (LO) modes”. A splitting appears between these modes and the “Transverse
Optic (TO) modes”. This splitting (Lyddane–Sachs–Teller LO–TO splitting) is presented in sim-
ple terms in standard textbooks, and should not be forgotten in doing ab initio calculations of
phonon frequencies.

Thus we have now to treat correctly the homogeneous electric field type perturbation.

2.5.5 Response–function calculation of the effect of an homogeneous
electric field

The treatment of the homogeneous electric field perturbation is formally much more complex than
the treatment of atomic displacements. This is primarily because the change of potential associated
with an homogeneous electric field is not periodic, and thus does not satisfy the Born–von Karman
periodic boundary conditions.

For the purpose of the present tutorial, one should read the section II.C of the above–mentioned
paper P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B 43, 7231 (1991) .

36



CHAPTER 2. TUTORIAL

The reader will find in X. Gonze, Phys. Rev. B 55, 10337 (1997) and X. Gonze and C. Lee, Phys.
Rev. B 55, 10355 (1997) more detailed information of this perturbation, closely related to the
ABINIT implementation. There is also an extensive discussion of the Born effective charges by
Ph. Ghosez, J.-P. Michenaud and X. Gonze, Phys. Rev. B 58, 6224 (1998).

In order to compute the response of solids to an homogeneous electric field, as implemented in
ABINIT, the remaining sections of the respfn_help file should be read. These also present the
information needed to compute phonons with non–zero q–wavevector, which will be the subject
of the next section of the present tutorial. The sections to be read are:

• the part of section 1 that had not yet been read;

• section 2;

• section 4;

• and, for completeness,section 5.

You are now in the position to compute the full dynamical matrix at Gamma (q = 0), including
the coupling with an homogeneous electric field. You can copy the file ~ABINIT/Tutorial/t55.in
in Work5. This is your input file. You should edit it. As for the other RF tests, the changes with
respect to the file ~ABINIT/Tutorial/t51.in are all gathered in the first part of this file. Unlike
the other tests, however, the multi–dataset mode was used, computing from scratch the ground–
state properties, then computing the effect of the ddk perturbation, then the effect of all other
perturbations (electric field as well as atomic displacements). The run lasts about 3 minutes on a
PIII 450MHz.

The analysis of the output file is even more cumbersome than the previous ones. Let us skip
the first dataset. In the dataset 2 section, one perturbation is correctly selected:

==> initialize data related to q vector <==

The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 3

===============================================================================

-------------------------------------------------------------------------------
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1

The analysis of the output for this particular perturbation is not particularly interesting, except
for the f–sum rule ratio

loper3 : ek2= 1.6833336546E+01
f-sum rule ratio= 1.0028582985E+00

that should be close to 1, and becomes closer to it when ecut is increased, and the sampling of
k–points is improved. (In the present status of ABINIT, the f–rule ratio is not computed correctly
when ecutsm 6= 0)

In the third dataset section, three irreducible perturbations are considered:

==> initialize data related to q vector <==

The list of irreducible perturbations for this q vector is:
1) idir= 1 ipert= 1
2) idir= 1 ipert= 2
3) idir= 1 ipert= 4

Much later, the dielectric tensor is given:

37



2.5. LESSON 5: DYNAMICAL AND DIELECTRIC PROPERTIES OF ALAS

Dielectric tensor, in cartesian coordinates,
j1 j2 matrix element

dir pert dir pert real part imaginary part

1 4 1 4 9.7606048428 0.0000000000
1 4 2 4 0.0000000000 0.0000000000
1 4 3 4 0.0000000000 0.0000000000

2 4 1 4 0.0000000000 0.0000000000
2 4 2 4 9.7606048428 0.0000000000
2 4 3 4 0.0000000000 0.0000000000

3 4 1 4 0.0000000000 0.0000000000
3 4 2 4 0.0000000000 0.0000000000
3 4 3 4 9.7606048428 0.0000000000

It is diagonal and isotropic, and corresponds to a dielectric constant of 9.7606048428.
Then, the Born effective charges are given, either computed from the derivative of the wave-

functions with respect to the electric field, or computed from the derivative of the wavefunctions
with respect to an atomic displacement, as explained in section II of X. Gonze, Phys. Rev. B 55,
10355 (1997):

Effective charges, in cartesian coordinates,
(from electric field response)
...

and

Effective charges, in cartesian coordinates,
(from phonon response)
...

Namely, the Born effective charge of the Al atom is 2.104, and the one of the As atom is
−2.127. The charge neutrality sum rule is not fulfilled exactly. When ecut is increased, and the
sampling of k–points is improved, the sum of the two charges goes closer to zero.

Finally, the phonon frequencies are computed:

Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :

2.586632E-06 2.590723E-06 2.614440E-06 1.568560E-03 1.568560E-03
1.568560E-03

Phonon frequencies in cm-1 :
- 5.677000E-01 5.685980E-01 5.738033E-01 3.442590E+02 3.442590E+02
- 3.442590E+02

Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :

2.590670E-06 2.590723E-06 4.101029E-06 1.568560E-03 1.568560E-03
1.729575E-03

Phonon frequencies in cm-1 :
- 5.685864E-01 5.685980E-01 9.000719E-01 3.442590E+02 3.442590E+02
- 3.795979E+02

Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 1.00000 0.00000

38



CHAPTER 2. TUTORIAL

Phonon energies in Hartree :
2.586632E-06 2.614440E-06 4.088526E-06 1.568560E-03 1.568560E-03
1.729575E-03

Phonon frequencies in cm-1 :
- 5.677000E-01 5.738033E-01 8.973277E-01 3.442590E+02 3.442590E+02
- 3.795979E+02

Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 0.00000 0.00000 1.00000
Phonon energies in Hartree :
2.590723E-06 2.610339E-06 4.088540E-06 1.568560E-03 1.568560E-03
1.729575E-03

Phonon frequencies in cm-1 :
- 5.685980E-01 5.729031E-01 8.973308E-01 3.442590E+02 3.442590E+02
- 3.795979E+02

The first few lines discard any effect of the homogeneous electric field, while the next sections
consider it along the three Cartesian coordinates.

In the present material, the directionality of the electric field has no influence. We note
that there are still three acoustic mode, below 1 cm−1, while the optic modes have the correct
degeneracies: two TO modes at 344.3 cm−1, and one LO mode at 379.6 cm−1.

These values can be compared to experimental (361 cm−1, 402 cm−1) as well as theoretical (363
cm−1, 400 cm−1) values (again the Gianozzi et al paper mentioned above). Most of the discrepancy
comes from the too low value of ecut. Using ABINIT with ecut=6 Hartree gives (358.8 cm−1, 389.8
cm−1). The remaining of the discrepancy may come partly from the pseudopotentials, that are
particularly soft.

The comparison of Born effective charges is also interesting. After imposition of the neutrality
sum rule, the Al Born effective charge is 2.116. The value from Gianozzi et al is 2.17, the
experimental value is 2.18. Increasing ecut to 6 Hartree in ABINIT gives 2.168.

For the dielectric tensor, it is more delicate. The value from Gianozzi et al is 9.2, while the
experimental value is 8.2. The agreement is not very good, a fact that can be attributed to the
LDA lack of polarization–dependence (X. Gonze, Ph. Ghosez and R. Godby, Phys. Rev. Lett.
(1995)). Still, the agreement of our calculation with the theoretical result is not very good. With
ecut = 3 Hartree, we have 9.76. Changing it to 6 Hartree gives 10.40. A better k–point sampling
(8x8x8), with ecut = 6 Hartree, reduces the value to 9.89. Changing pseudopotentials finally
improves the agreement: with the much harder 13al.pspgth and 33as.psphgh pseudopotentials
with adequate ecut = 16 Hartree and 8x8x8 Monkhorst–Pack sampling, we reach a value of 9.37.
This illustrates that the dielectric tensor is a much more sensitive quantity than the others.

2.5.6 Response–function calculation of phonon frequencies at non–zero
q

The computation of phonon frequencies at non–zero q is actually simpler than the one at Gamma.
One must distinguish two cases. Either the q–wavevector connects k–points that belong to the
same grid, or the wavevector q is general. In any case, the computation within the response–
function formalism is more efficient than using the frozen–phonon technique: the use of supercell
is completely avoided. For an explanation of this fact, see for example section IV of X. Gonze,
Phys. Rev. B55, 10337 (1997).

You can copy the file ~ABINIT/Tutorial/t56.in in Work5. This is your input file. You should
edit it. As for the other RF tests, the changes with respect to the file ~ABINIT/Tutorial/t51.in
are all gathered in the first part of this file. The multi–dataset mode is used, computing from
scratch the ground–state properties, then computing different dynamical matrices. The run is
rather long: about 30 minutes on a PIII 450MHz. So, you would better leave your computer

39



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

running, and either read more of the ABINIT documentation (why not the mrgddb_help and the
anaddb_help), or make a walk.

The results of this simulation can be compared to those provided in the Gianozzi et al paper.
The agreement is rather good, despite the low cut–off energy, and different pseudopotentials.

At X, they get 95 cm−1, 216 cm−1, 337 cm−1 and 393 cm−1, while we get 92.5 cm−1, 204.6
cm−1, 313.9 cm−1 and 375.9 cm−1. With ecut = 6 Hartree, we get 89.7 cm−1, 212.3 cm−1, 328.5
cm−1 and 385.8 cm−1.

At L, they get 71 cm−1, 212 cm−1, 352 cm−1 and 372 cm−1, while we get 69.0 cm−1, 202.5
cm−1, 332.6 cm−1 and 352.3 cm−1. With ecut = 6 Hartree, we get 68.1 cm−1, 208.5 cm−1, 346.7
cm−1 and 362.6 cm−1.

At q=(0.1 0 0), we get 31.6 cm−1, 63.6 cm−1, 342.0 cm−1 and 379.7 cm−1. The acoustic modes
tends (nearly-)linearly to zero, while the optic modes are close to their values at Gamma: 344.3
cm−1 and 379.6 cm−1.

2.5.7 The computation of full phonon band structures and thermody-
namical properties

This section is still to be written. You might have a look at the tests 26 to 32 of the directory
~ABINIT/Infos/Test_v2.

The ABINIT tutorial is now finished. It might be worth to read the full list of abinis input
variables. Then, proceeds to the ~ABINIT/Infos/Dirs_and_files file, to have a global view of
ABINIT.

2.6 Lesson 6: The quasi–particle band structure of Silicon,
in the GW approximation

This lesson aims at showing how to get self–energy corrections to the DFT Kohn–Sham eigenvalues
in the GW approximation. The GW formalism will NOT be explained in this tutorial. The reader
might consult the review

• “Quasiparticle calculations in solids”, by Aulbur W G, Jonsson L, Wilkins J W, in Solid
State Physics 54, 1–218 (2000), also available at http://www.physics.ohio-state.edu/
~wilkins/vita/gw_review.ps

The different formulas of the GW formalism, that have been implemented in ABINIT, have
been written in a pdf document by Valerio Olevano (who also wrote the first version of this
tutorial), see ~ABINIT/Infos/Theory/gwa.pdf.

This lesson should take about 2 hours to be done.

2.6.1 Computation of the Silicon band gap at Gamma, using a GW
calculation

Before beginning, you might consider to work in a different subdirectory as for the other lessons.
Why not “Work6”?

At the end of lesson 3, you computed the Kohn–Sham band structure of Silicon. In this
approximation, the variation of eigenvalues inside each band is reasonable, as well as the band
widths, but the band gaps are known to be qualitatively wrong. Now, we will compute the band
gaps much more accurately, using the so–called GW approximation.

We start by an example, in which we show how to perform in one shot the calculation of
the ground state, the Kohn Sham electronic structure, the screening, and the Self–Energy matrix
elements, that is, the GW corrections, for one given k–point, for the highest occupied and the
lowest empty bands. We provide some reasonable parameters without checking convergence. You

40

http://www.physics.ohio-state.edu/~wilkins/vita/gw_review.ps
http://www.physics.ohio-state.edu/~wilkins/vita/gw_review.ps


CHAPTER 2. TUTORIAL

will see that this procedure is MUCH MORE time–consuming than the corresponding calculation
of the Kohn–Sham eigenvalues.

So, let us run immediately this calculation, and while it is running, we will explain what has
been done.

In directory ~ABINIT/Tutorial/Work6, copy the files ~ABINIT/Tutorial/t6x.files and t61.
in, and modify the t6x.files file as usual. Then, issue:

../../abinis < t6x.files >& t61.log &

It is very important to run this job in background. Indeed, a PC Intel PIV/2.2 GHz will take
about 6 minutes to complete it. In the meantime, you should read the following.

1. The three steps of a GW calculation.

In order to complete a standard GW calculation, one has to:

(a) Run a converged Ground State calculation (at fixed lattice parameters and atomic
positions), to get self–consistent density and potential, and Kohn–Sham eigenvalues
and eigenfunctions at the relevant k–point as well as on a regular grid of k–points;

(b) On the basis of these available Kohn–Sham data, compute the independent–particle
susceptibility matrix (“chi0”), on a regular grid of wavevectors, for at least two fre-
quencies (usually, zero frequency and a large frequency — on the order of the plasmon
frequency, a dozen of eV), then compute the dielectric matrix (“epsilon”) in the same
conditions, its inverse, and the Random–Phase susceptibility matrix (“chi”);

(c) On this basis, compute the self–energy operator (“sigma”) at a given k–point, and
derive the GW eigenvalues for the target states at this k–point.

The input file t61.in has precisely that structure: there are three datasets. The first dataset
starts a rather usual SCF calculation, then will construct a specialized file, t6xo_DS1_KSS
(_KSS for “Kohn–Sham Structure”), that contains the needed information to start step 2.
The second dataset drives the computation of susceptibility and dielectric matrices, giving
another specialized file, t6xo_DS2_EM1 (_EM1 for “Epsilon Minus 1” — the inverse dielectric
matrix). Then, in the third dataset, one builds the eigenvalues of the 4th and 5th bands at
the Gamma point.

So, you can edit this t61.in file.

In the dataset–independent part of this file (the last half of the file), there is the usual
set of input variables, describing the cell, atom types, number, position, planewave cut–off
energy, SCF convergence parameters, than in the t35.in file, driving the Kohn–Sham band
structure calculation. Then, for the three datasets, you will find specialized additional input
variables.

2. Generating the Kohn–Sham band structure: the KSS file.

In dataset 1, apart from the usual input variables we are acquainted to through the previous
tutorials, there is a new input variable:

nbandkss -1 # Number of bands in KSS file (-1 means the maximum possible)

This input variable tells the program to calculate the Kohn–Sham electronic structure by the
(in this case) full diagonalization of the Kohn–Sham Hamiltonian evaluated at the converged
density and calculated in each one of the k–points of the grid. Note that this diagonalization
is performed in a routine (outkss.f) separated from the usual SCF cycle, so that there is
additional control of the wavefunction actually stored, if needed. In particular, the number
of bands to be computed in this routine is NOT determined by the usual input variable
nband.

41



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

nbandkss is the key variable to create a _KSS file. If it is zero, no _KSS file will be created.
−1 lead to the generation and storage of the maximum possible number of states (or bands)
common to all points. This might lead to quite time–consuming calculations. One can
reduce the load in the diagonalization by requiring less states.

Another way to reduce the load of the diagonalization is made possible through the use of
npwkss. It governs the size of the plane wave basis set in which the Hamiltonian matrix will
be expressed and diagonalized. The default value leaves the number of plane wave equal to
the one of the SCF ground state calculation.

Another relevant input variable, related also to the specific set up of the _KSS file is kssform.

In this first dataset, we asked also the self–consistent cycle to be done for nine bands.

nband1 9 # Number of (occ and empty) bands to be computed

Only four bands would be needed for Si. The purpose of defining more bands in the ground–
state determination is to verify that at least the first Kohn–Sham eigenvalues obtained
through the diagonalization are sufficiently close to those determined in the self–consistent
procedure. At present, the comparison is not done automatically, so please check (well,
sometimes ...) that the Kohn–Sham eigenvalues given in the self–consistency part (with a
residual) are close to those given after the diagonalization.

3. Generating the screening: the EM1 file.

In dataset 2 the calculation of the screening (susceptibility, dielectric matrix) is performed.
We need to set optdriver=3 to do that:

optdriver2 3 # Screening calculation

The getkss input variable is similar to other “get” input variables of ABINIT:

getkss2 -1 # Obtain KSS file from previous dataset

In this case, it tells the code to use the KSS file calculated in the previous dataset.

Then, three input variables describe the computation:

nband2 25 # Bands to be used in the screening calculation
ecutwfn2 2.1 # Cut--off energy of the planewave set to

# represent the wavefunctions
ecuteps2 3.6 # Cut--off energy of the planewave set to

# represent the dielectric matrix

In this case, we use 25 bands to calculate the Kohn–Sham response function χ
(0)
KS ; we use

a cut–off ecutwfn=2.1 Hartree, giving 89 planewaves to represent the wavefunctions in the
calculation of χ(0)

KS . The dimension of χ(0)
KS , as well as all the other matrices (χ, ε) is

determined by ecuteps=3.6 Hartree, giving 169 planewaves.

Finally we define the frequencies at which the screening must be evaluated: ω = 0.0 eV
and the imaginary frequency ω = i 16.7 eV. The latter is determined by the input variable
plasfrq :

plasfrq2 16.7 eV # Imaginary frequency where to calculate the
# screening

42



CHAPTER 2. TUTORIAL

The two frequencies are used to calculate the plasmon–pole model parameters. For the
non–zero frequency it is recommended to use a value close to the plasmon frequency for the
plasmon–pole model to work well. Plasmons frequencies are usually close to 0.5 Hartree.
The parameters for the screening calculation are not far from the ones that give converged
Energy Loss Function (−Im ε−1

00 ) spectra, So that one can start up by using indications from
EELS calculations existing in literature.

4. Computing the GW energies.

In dataset 3 the calculation of the Self–Energy matrix elements is performed. One needs to
define the driver option, as well as the _KSS and _EM1 files.

optdriver3 4 # Self-Energy calculation
getkss3 -2 # Obtain KSS file from dataset 1
geteps3 -1 # Obtain EM1 file from previous dataset

The geteps input variable is also similar to other “get” input variables of ABINIT.

Then, comes the definition of parameters needed to compute the self–energy. As for the
computation of the susceptibility and dielectric matrices, one must define the set of bands,
and two sets of planewaves:

nband3 100 # Bands to be used in the Self-Energy calculation
ecutwfn3 5.0 # Planewaves to be used to represent the wave

# functions
ecutsigx3 6.0 # Dimension of the G sum in Sigma_x

# (the dimension in Sigma_c is controlled by npweps)

In this case, nband controls the number of bands used to calculate the Self–Energy. ecutwfn
defines (as for optdriver = 3) the number of planewaves used to represent the wavefunc-
tions. ecutmat gives the dimension of the planewave sum needed to calculate Sigma x (the
exchange part of the self–energy, which is diagonal). The size of the planewave set needed
to compute Sigma c (the correlation part of the self–energy) is controlled by the dimension
of the screening matrix read in the EM1 file. However, it is taken equal to the number of
planewave of Sigma x if the latter is smaller than the one for Sigma c.

Then, come the parameters defining the k–points and states for which the electronic energy
must be computed:

nkptgw3 1 # number of k-point where to calculate the
# GW correction

kptgw3 # k-points
-0.125 0.000 0.000

bdgw3 4 5 # calculate GW corrections for bands from 4 to 5

nkptgw tells the number of k–points for which the GW corrections must be computed. The
k–points coordinates are given in kptgw. At present, they must belong to the grid of k–
points defined with the same repetition parameters (kptrlatt, or ngkpt) than the GS one,
but WITHOUT any shift. bdgw gives the minimum/maximum band whose energies are
calculated.

There is an additional parameter, called zcut, related to the self–energy computation. It is
meant to avoid some divergences that might occur in the calculation due to integrable poles
along the integration path.

5. Examination of the output file.

Let us hope now that your calculation has been completed, and that we can examine the
output file. So, please edit the t61.out file.

43



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

The first departure from the usual information present in the output file for usual GS cal-
culations appears after the SCF cycles of DATASET 1:

======================================================================
Calculating and writing out Kohn-Sham electronic Structure file
Using diagonalized wavefunctions and energies (kssform=1)
number of Gamma centered plane waves 483
number of Gamma centered shells 25
number of bands 283

This section was issued when the Hamiltonian at the different k points were diagonalized,
after the SCF cycles, in order to generate the KSS file. Then, comes the output of the numer-
ous eigenvalues at the different k–points. Finally, the normalization and orthogonalization
of the eigenvectors is tested. One should obtain perfect normalization and orthogonalization
at that stage:

Test on the normalization of the wavefunctions
min sum_G |a(n,k,G)| = 1.000000
max sum_G |a(n,k,G)| = 1.000000
Test on the orthogonalization of the wavefunctions
min sum_G a(n,k,G)* a(n’,k,G) = 0.000000
max sum_G a(n,k,G)* a(n’,k,G) = 0.000000

Then, follows the usual information for the dataset 1. The dataset 2 drives the computation
of the susceptibility and dielectric matrices, in preparation of the GW energy calculation of
dataset 3. After some general information (origin of KSS file, header, description of unit
cell), comes the echo of Kohn–Sham eigenenergies (in eV), and then the evaluation of the
wavefunction normalization and orthogonalization USING ONLY THE PLANEWAVE SET
DEFINED BY ecutwfn, npwwfn, or nshwfn. Thus, there is no surprise that these relations
are not fulfilled:

test on the normalization of the wavefunctions
min sum_G |a(n,k,G)| = 0.497559
max sum_G |a(n,k,G)| = 0.995840
test on the orthogonalization of the wavefunctions
min sum_G a(n,k,G)* a(n",k,G) = 0.000000
max sum_G a(n,k,G)* a(n",k,G) = 0.179460

The squared norm of one of the wavefunctions is even as low as one half! This should lead
us to question the choice of ecutwfn that we have made: we will need a convergence study,
see later.

The parameters of the FFT grid needed to represent the wavefunction and compute their
convolution (so as to get the screening matrices) are then given.

Then, the grid of q–point (in the irreducible part of the Brillouin Zone) on which the sus-
ceptibility and dielectric matrices will be computed is given. It is a grid of points with the
same repetition parameters (kptrlatt, or ngkpt) than the GS one, but WITHOUT any shift.

On the basis of only the average density, one can obtain the plasmon frequency of metallic
Jellium (homogeneous electron gas, placed in a neutralizing background). The next lines
start from the average density of the system, and evaluate the rs parameter of the Jellium,
then compute the plasmon frequency. THIS IS A ROUGH ESTIMATE. In particular, it will
be questionable for strongly inhomogeneous systems! Also, the choice of pseudopotential
(inclusion of core states) will have an effect on this estimate. So, take it cautiously. It is
better to try a few values of plasfrq than to rely blindly on this value ...

At the end of the screening calculation, the macroscopic dielectric constant is printed:

44



CHAPTER 2. TUTORIAL

dielectric constant = 13.8476
dielectric constant without local fields = 15.5520

Note that the convergence in the dielectric constant DOES NOT guarantee the convergence
in the GW correction values at the end of the calculation. In fact, the dielectric constant
is representative of only one element, the head, of the full dielectric matrix. Even if the
convergence on the dielectric constant with local fields takes somehow into account also
other non–diagonal elements. In a GW calculation all the ε−1 matrix is used to build the
Self–Energy operator.

The dielectric constant here reported is the so–called RPA dielectric constant due to the
electrons. Although evaluated at zero frequency, it is understood that the ionic response
is not included. This is to be contrasted with the one computed in ANADDB). The RPA
dielectric constant restricted to electronic effects is also not the same as the one computed
in the RESPFN part of ABINIT, that includes exchange–correlation effects.

We enter now the third dataset. As for dataset 2, after some general information (origin of
KSS file, header, description of unit cell), the echo of Kohn–Sham eigenenergies (in eV), the
evaluation of the wavefunction normalization, the description of the FFT grid and Jellium
parameters, there is the echo of parameters for the plasmon–pole model, and the inverse
dielectric function (the screening). The self–energy operator has been constructed, and one
can evaluate the GW energies, for each of the states.

The results follows:

k = -0.125 0.000 0.000
Band E0 <VxcLDA> SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.616 -11.132 -12.334 1.257 0.775 -0.290 -11.089 0.043 5.659
5 8.357 -10.157 -5.951 -3.336 0.779 -0.284 -9.480 0.677 9.034

E^0_gap 2.741
E^GW_gap 3.375
DeltaE^GW_gap 0.634

For the desired k–point, state 4, then state 5, one finds different information:

• E0 is the Kohn–Sham eigenenergy;

• VxcLDA gives the average Kohn–Sham exchange–correlation potential;

• SigX gives the exchange contribution to the self–energy;

• SigC(E0) gives the correlation contribution to the self–energy, evaluated at the Kohn–
Sham eigenenergy;

• Z is the renormalization factor;

• dSigC/dE is the energy derivative of SigC with respect to the energy;

• SigC(E) gives the correlation contribution to the self–energy, evaluated at the GW
energy;

• E-E0 is the difference between GW energy and Kohn–Sham eigenenergy;

• E is the GW energy.

In this case, the gap is also analyzed: E^0_gap is the Kohn–Sham one, E^GW_gap is the GW
one, and DeltaE^GW_gap is the difference.

It is seen that the average Kohn–Sham exchange–correlation potential for the state 4 (a
valence state) is very close to the exchange self–energy correction. For that state, the corre-
lation correction is small, and the difference between Kohn–Sham and GW energies is also
small (43 meV). By contrast, the exchange self–energy is much smaller than the average

45



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

Kohn–Sham potential for the state 5 (a conduction state), but the correlation correction is
much larger than for state 4. On the whole, the difference between Kohn–Sham and GW
energies is not very large, but nevertheless, it is quite important when compared with the
size of the gap.

2.6.2 Preparing convergence studies: Kohn–Sham structure (KSS file)
and screening (EM1 file)

In the following sections, we will perform different convergence analyses, because this is such
an important task. In order to keep the CPU time at a reasonable level, we will use fake KSS
and screening data, by limiting ourselves to the Gamma point only. In that way, we will verify
convergence aspects that could be very cumbersome (at least in the framework of a tutorial) if
more k–points were used.

In directory ~ABINIT/Tutorial/Work6, copy the file ../t62.in, and modify the t6x.files
file as usual. Edit the t62.in file, and take the time to examine it. Note that the SCF cycles have
been disconnected from the generation of the KSS file. Then, issue:

../../abinis < t6x.files >& t62.log &

This small job lasts about 10 secs on a PC PIV Intel 2.2 GHz.
After that step you will need the KSS and EM1 files produced in this run for the next runs

(up to 6.8). Move t6xo_DS2_KSS to t6xo_DS1_KSS and t6xo_DS3_EM1 to t6xo_DS1_EM1.
The next 6 sections are intended to show you how to find the converged parameters for a GW

calculation.

2.6.3 Convergence on the number of planewaves in the wavefunctions
to calculate the Self–Energy

We begin by the convergence study on the three parameters needed in the self–energy calculation
(optdriver=4). This is because for these, we will not need a double dataset loop to check this
convergence, and we will rely on the previously determined EM1 file.

First, we check the convergence on the number of planewaves to describe the wavefunctions,
in the calculation of the Self–Energy. This will be done by defining five datasets, with increasing
ecutwfn:

ndtset 5
ecutwfn: 3.0
ecutwfn+ 1.0

In directory ~ABINIT/Tutorial/Work6, copy the file ../t63.in, and modify the t6x.files
file as usual. Edit the t63.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t63.log &

This small job lasts about 10 secs on a PC PIV Intel 2.2 GHz.
Edit the output file. The number of plane waves used for the wavefunctions in the computation

of the self–energy is mentioned in the fragments of output:

SIGMA fundamental parameters:
PLASMON POLE MODEL
number of plane-waves for SigmaX 169
number of plane-waves for SigmaC and W 169
number of plane-waves for wavefunctions 59

Gathering the GW energies for each planewave set, one gets:

46



CHAPTER 2. TUTORIAL

number of plane-waves for wavefunctions 59
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.651 -15.237 3.897 0.806 -0.240 -11.401 0.251 6.166
5 8.445 -9.669 -3.222 -5.460 0.819 -0.222 -8.861 0.808 9.253

number of plane-waves for wavefunctions 113
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.244 3.789 0.804 -0.244 -11.495 0.159 6.075
5 8.445 -9.691 -3.213 -5.564 0.817 -0.224 -8.944 0.747 9.192

number of plane-waves for wavefunctions 137
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.244 3.779 0.804 -0.244 -11.502 0.151 6.066
5 8.445 -9.702 -3.216 -5.577 0.817 -0.225 -8.960 0.743 9.188

number of plane-waves for wavefunctions 169
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.651 -15.242 3.770 0.804 -0.245 -11.508 0.144 6.059
5 8.445 -9.718 -3.221 -5.584 0.817 -0.225 -8.972 0.745 9.190

number of plane-waves for wavefunctions 259
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.667 -15.253 3.766 0.803 -0.245 -11.522 0.145 6.060
5 8.445 -9.716 -3.219 -5.591 0.816 -0.225 -8.977 0.740 9.185

So that npwwfn=137 (ecutwfn=5.0) can be considered converged within 0.01eV.

2.6.4 Convergence on the number of planewaves to calculate Sigma x

Second, we check the convergence on the number of planewaves in the calculation of the Sigma X.
This will be done by defining five datasets, with increasing ecutmat :

ndtset 7
ecutsigx: 3.0
ecutsigx+ 1.0

In directory ~ABINIT/Tutorial/Work6, copy the file ../t64.in, and modify the t6x.files
file as usual. Edit the t64.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t64.log &

This small job lasts about 12 secs on a PC PIV Intel 2.2 GHz.
Edit the output file. The number of plane waves used for Sigma X is mentioned in the fragments

of output:

SIGMA fundamental parameters:
PLASMON POLE MODEL
number of plane-waves for SigmaX 59
number of plane-waves for SigmaC and W 59

Gathering the GW energies for each planewave set, one gets:

number of plane-waves for SigmaX 59
number of plane-waves for SigmaC and W 59
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.195 3.862 0.806 -0.241 -11.395 0.259 6.174
5 8.445 -9.702 -3.177 -5.595 0.818 -0.223 -8.941 0.761 9.206

47



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

number of plane-waves for SigmaX 113
number of plane-waves for SigmaC and W 113
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.235 3.795 0.804 -0.244 -11.482 0.172 6.087
5 8.445 -9.702 -3.210 -5.581 0.817 -0.224 -8.958 0.744 9.189

number of plane-waves for SigmaX 137
number of plane-waves for SigmaC and W 137
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.241 3.785 0.804 -0.244 -11.495 0.159 6.074
5 8.445 -9.702 -3.213 -5.577 0.817 -0.224 -8.958 0.745 9.190

number of plane-waves for SigmaX 169
number of plane-waves for SigmaC and W 169
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.244 3.779 0.804 -0.244 -11.502 0.151 6.066
5 8.445 -9.702 -3.216 -5.577 0.817 -0.225 -8.960 0.743 9.188

number of plane-waves for SigmaX 259
number of plane-waves for SigmaC and W 169

Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E
4 5.915 -11.654 -15.247 3.779 0.804 -0.244 -11.504 0.150 6.065
5 8.445 -9.702 -3.218 -5.577 0.817 -0.225 -8.961 0.741 9.186

number of plane-waves for SigmaX 283
number of plane-waves for SigmaC and W 169
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.247 3.779 0.804 -0.244 -11.504 0.150 6.065
5 8.445 -9.702 -3.218 -5.577 0.817 -0.225 -8.961 0.741 9.186

number of plane-waves for SigmaX 283
number of plane-waves for SigmaC and W 169
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.654 -15.247 3.779 0.804 -0.244 -11.504 0.150 6.065
5 8.445 -9.702 -3.218 -5.577 0.817 -0.225 -8.961 0.741 9.186

So that npwsigx=169 (ecutsigx=6.0) can be considered converged within 0.01 eV.

2.6.5 Convergence on the number of bands to calculate the Self–Energy

At last, as concerns the computation of the self–energy, we check the convergence on the number
of bands in the calculation of the Sigma X. This will be done by defining five datasets, with
increasing nband :

ndtset 5
nband: 50
nband+ 50

In directory ~ABINIT/Tutorial/Work6, copy the file ../t65.in, and modify the t6x.files
file as usual. Edit the t65.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t65.log &

This small job lasts about 12 secs on a PC PIV Intel 2.2 GHz.

48



CHAPTER 2. TUTORIAL

Edit the output file. The number of bands used for the self–energy is mentioned in the frag-
ments of output:

SIGMA fundamental parameters:
PLASMON POLE MODEL
number of plane-waves for SigmaX 169
number of plane-waves for SigmaC and W 169
number of plane-waves for wavefunctions 137
number of bands 50

Gathering the GW energies for each number of bands, one gets:

number of bands 50
4 5.915 -11.654 -15.244 3.853 0.804 -0.243 -11.443 0.211 6.126
5 8.445 -9.702 -3.216 -5.507 0.817 -0.224 -8.902 0.800 9.246

number of bands 100
4 5.915 -11.654 -15.244 3.779 0.804 -0.244 -11.502 0.151 6.066
5 8.445 -9.702 -3.216 -5.577 0.817 -0.225 -8.960 0.743 9.188

number of bands 150
4 5.915 -11.654 -15.244 3.771 0.804 -0.244 -11.509 0.145 6.060
5 8.445 -9.702 -3.216 -5.585 0.817 -0.225 -8.966 0.736 9.182

number of bands 200
4 5.915 -11.654 -15.244 3.769 0.804 -0.244 -11.510 0.143 6.059
5 8.445 -9.702 -3.216 -5.587 0.817 -0.225 -8.967 0.735 9.180

number of bands 250
4 5.915 -11.654 -15.244 3.769 0.804 -0.244 -11.510 0.143 6.058
5 8.445 -9.702 -3.216 -5.587 0.817 -0.225 -8.967 0.735 9.180

So that nband=100 can be considered converged within 0.01 eV.
At this stage, we know that for the self–energy computation, we need ecutwfn=5.0 ecutmat=6.0,

nband=100.

2.6.6 Convergence on the number of planewaves in the wavefunctions
to calculate the screening (ε−1)

Now, we come back to the calculation of the screening. Adequate convergence studies will couple
the change of parameters for optdriver=3 with a computation of the GW energy changes. One
cannot rely on the convergence of the macroscopic dielectric constant to assess the convergence of
the GW energies.

As a consequence, we will define a double loop over the datasets:

ndtset 10
udtset 5 2

The datasets 12, 22, 32, 42 and 52, drive the computation of the GW energies:

# Calculation of the Self--Energy matrix elements (GW corrections)
optdriver?2 4
geteps?2 -1
ecutwfn?2 5.0
ecutsigx 6.0
nband?2 100

49



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

The datasets 11,21,31,41 and 51, drive the corresponding computation of the screening:

# Calculation of the screening (epsilon^-1 matrix)
optdriver?1 3

In this latter series, we will have to vary the three different parameters ecutwfn, ecuteps and
nband.

First, we check the convergence on the number of planewaves to describe the wavefunctions,
in the calculation of the screening. This will be done by defining five datasets, with increasing
ecutwfn:

ecutwfn:? 3.0
ecutwfn+? 1.0

In directory ~ABINIT/Tutorial/Work6, copy the file ../t66.in, and modify the t6x.files
file as usual. Edit the t66.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t66.log &

This small job lasts about 15 secs on a PC PIV Intel 2.2 GHz.
Edit the output file. The number of plane waves used for the wavefunctions in the computation

of the screening is mentioned in the fragments of output:

EPSILON^-1 parameters (EM1 file):
dimension of the eps^-1 matrix 169
number of plane-waves for wavefunctions 59

Gathering the macroscopic dielectric constant and GW energies for each planewave set, one
gets:

dielectric constant = 101.5301
dielectric constant without local fields = 147.3095
number of plane-waves for wavefunctions 59

4 5.915 -11.654 -15.244 3.799 0.806 -0.241 -11.486 0.168 6.083
5 8.445 -9.702 -3.216 -5.555 0.816 -0.225 -8.942 0.761 9.206

dielectric constant = 99.5265
dielectric constant without local fields = 143.7208
number of plane-waves for wavefunctions 113

4 5.915 -11.654 -15.244 3.769 0.804 -0.244 -11.510 0.143 6.059
5 8.445 -9.702 -3.216 -5.582 0.815 -0.226 -8.964 0.738 9.183

dielectric constant = 98.2598
dielectric constant without local fields = 142.5982
number of plane-waves for wavefunctions 137

4 5.915 -11.654 -15.244 3.762 0.801 -0.248 -11.517 0.137 6.052
5 8.445 -9.702 -3.216 -5.588 0.815 -0.227 -8.970 0.733 9.178

dielectric constant = 97.6265
dielectric constant without local fields = 142.1664
number of plane-waves for wavefunctions 169

4 5.915 -11.654 -15.244 3.759 0.804 -0.244 -11.519 0.135 6.050
5 8.445 -9.702 -3.216 -5.590 0.815 -0.227 -8.972 0.731 9.176

dielectric constant = 96.4286
dielectric constant without local fields = 140.5466
number of plane-waves for wavefunctions 259

4 5.915 -11.654 -15.244 3.760 0.803 -0.245 -11.518 0.136 6.051
5 8.445 -9.702 -3.216 -5.592 0.815 -0.227 -8.973 0.730 9.175

50



CHAPTER 2. TUTORIAL

So that npwwfn=113 (ecutwfn=4.0) can be considered converged within 0.01 eV.

2.6.7 Convergence on the number of bands to calculate the screening

Second, we check the convergence on the number of bands in the calculation of the screening. This
will be done by defining five datasets, with increasing nband :

nband11 25
nband21 50
nband31 100
nband41 150
nband51 200

In directory ~ABINIT/Tutorial/Work6, copy the file ../t67.in, and modify the t6x.files
file as usual. Edit the t67.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t67.log &

This small job lasts about 22 secs on a PC PIV Intel 2.2 GHz.
Edit the output file. The number of bands used for the wavefunctions in the computation of

the screening is mentioned in the fragments of output:

EPSILON^-1 parameters (EM1 file):
dimension of the eps^-1 matrix 169
number of plane-waves for wavefunctions 113
number of bands 25

Gathering the macroscopic dielectric constant and GW energies for each number of bands, one
gets:

dielectric constant = 99.5265
dielectric constant without local fields = 143.7208
number of bands 25

4 5.915 -11.654 -15.244 3.769 0.804 -0.244 -11.510 0.143 6.059
5 8.445 -9.702 -3.216 -5.582 0.815 -0.226 -8.964 0.738 9.183

dielectric constant = 100.6436
dielectric constant without local fields = 143.7240
number of bands 50

4 5.915 -11.654 -15.244 3.587 0.804 -0.244 -11.657 -0.003 5.912
5 8.445 -9.702 -3.216 -5.764 0.815 -0.227 -9.113 0.589 9.034

dielectric constant = 101.1764
dielectric constant without local fields = 143.7244
number of bands 100

4 5.915 -11.654 -15.244 3.516 0.804 -0.244 -11.714 -0.060 5.855
5 8.445 -9.702 -3.216 -5.846 0.811 -0.233 -9.182 0.520 8.965

dielectric constant = 101.2028
dielectric constant without local fields = 143.7244
number of bands 150

4 5.915 -11.654 -15.244 3.510 0.804 -0.244 -11.718 -0.065 5.850
5 8.445 -9.702 -3.216 -5.853 0.810 -0.234 -9.189 0.514 8.959

dielectric constant = 101.2128
dielectric constant without local fields = 143.7244

51



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

number of bands 200
4 5.915 -11.654 -15.244 3.509 0.803 -0.246 -11.719 -0.065 5.850
5 8.445 -9.702 -3.216 -5.854 0.812 -0.231 -9.188 0.514 8.960

So that the computation using 100 bands can be considered converged within 0.01 eV.

2.6.8 Convergence on the dimension of the ε−1 matrix

Third, we check the convergence on the number of plane waves in the calculation of the screening.
This will be done by defining six datasets, with increasing ecuteps:

ecuteps:? 3.0
ecuteps+? 1.0

In directory ~ABINIT/Tutorial/Work6, copy the file ../t68.in, and modify the t6x.files
file as usual. Edit the t68.in file, and take the time to examine it. Then, issue:

../../abinis < t6x.files >& t68.log &

This small job lasts about 25 secs on a PC PIV Intel 2.2 GHz.
Edit the output file. The number of bands used for the wavefunctions in the computation of

the screening is mentioned in the fragments of output:

EPSILON^-1 parameters (EM1 file):
dimension of the eps^-1 matrix 59

Gathering the macroscopic dielectric constant and GW energies for each number of bands, one
gets:

dielectric constant = 102.1281
dielectric constant without local fields = 143.7244
dimension of the eps^-1 matrix 59

4 5.915 -11.654 -15.244 3.684 0.806 -0.241 -11.579 0.075 5.990
5 8.445 -9.702 -3.216 -5.847 0.811 -0.232 -9.183 0.519 8.964

dielectric constant = 101.2712
dielectric constant without local fields = 143.7244
dimension of the eps^-1 matrix 113

4 5.915 -11.654 -15.244 3.559 0.804 -0.243 -11.680 -0.026 5.889
5 8.445 -9.702 -3.216 -5.850 0.811 -0.233 -9.185 0.517 8.962

dielectric constant = 101.2649
dielectric constant without local fields = 143.7244
dimension of the eps^-1 matrix 137

4 5.915 -11.654 -15.244 3.535 0.804 -0.244 -11.699 -0.045 5.870
5 8.445 -9.702 -3.216 -5.846 0.811 -0.232 -9.182 0.520 8.965

dielectric constant = 101.1764
dielectric constant without local fields = 143.7244
dimension of the eps^-1 matrix 169

4 5.915 -11.654 -15.244 3.516 0.804 -0.244 -11.714 -0.060 5.855
5 8.445 -9.702 -3.216 -5.846 0.811 -0.233 -9.182 0.520 8.965

dielectric constant = 101.1384
dielectric constant without local fields = 143.7244
dimension of the eps^-1 matrix 259

4 5.915 -11.654 -15.244 3.517 0.804 -0.244 -11.713 -0.060 5.855
5 8.445 -9.702 -3.216 -5.845 0.811 -0.232 -9.182 0.521 8.966

52



CHAPTER 2. TUTORIAL

So that npweps=169 (ecuteps=6.0) can be considered converged within 0.01 eV.
At this stage, we know that for the screening computation, we need ecutwfn=4.0 ecuteps=6.0,

nband=100.
Of course, until now, we have skipped the most difficult part of the convergence tests: the

number of k–points. It is as important to check the convergence on this parameter, than on the
other ones. However, this might be very time consuming, since the CPU time scales as the square
of the number of k–points (roughly), and the number of k–points can increase very rapidly from
one possible grid to the next denser one. This is why we will leave this out of the present tutorial,
and consider that we already know a sufficient k–point grid, for the last calculation.

2.6.9 Calculation of the GW corrections for the band gap in Gamma

Now we try to perform a GW calculation for a real problem: the calculation of the GW corrections
for the direct band gap of bulk Silicon in Gamma.

In directory ~ABINIT/Tutorial/Work6, copy the file ../t69.in, and modify the t6x.files
file as usual. DO NOT EDIT IT NOW. Issue:

../../abinis < t6x.files >& t69.log &

This job lasts about 20 minutes on a PC PIV Intel 2.2 GHz. Because it is so long, it was worth
to run it before the examination of the input file.

Now, you can examine it.
We need the usual part of the input file to perform a ground state calculation. This is done

in dataset 1 and at the end we print out the density. We use a 4x4x4 FCC grid (so, 256 k–points
in the full Brillouin Zone), shifted, because it is the most economical. It gives 10 k–points in the
Irreducible part of the Brillouin Zone. However, this k–point grid does not contains the Gamma
point, and, at present, one cannot perform calculations of the self–energy corrections for other
k–points than those present in the grid of k–points in the KSS file.

Then in dataset 2 we perform a non self–consistent calculation to calculate the Kohn–Sham
structure in a set of 19 k–points in the Irreducible Brillouin Zone. This set of k–points is also
derived from a 4x4x4 FCC grid, but a NON–SHIFTED one. It has the same density of points
as the 10 k–point set, but the symmetries are not used in a very efficient way. However, this set
contains the Gamma point, which allows us to tackle the computation of the band gap at this
point.

In dataset 3 we calculate the screening. The screening calculation is very time–consuming.
So, we have decided to weaken a bit the parameters found in the previous convergence studies.
Indeed, ecutwfn has been decreased from 4.0 to 3.6 . This is rather innocuous. Also, nband has
been decreased from 100 to 25. This is a drastic change. The CPU time of this part is linear
with respect to this parameter (or more exactly, with the number of conduction bands). Thus, the
CPU time has been decreased by a factor of 4. Referring to our previous convergence study, we
see that the absolute accuracy on the GW energies is now on the order of 0.2 eV only. However,
the gap energy (difference between valence and conduction states) is likely correct within 0.02 eV.

Finally in dataset 4 we calculate the self–energy matrix element in Gamma, using the previously
determined parameters.

You should obtain the following results:

k = 0.000 0.000 0.000
Band E0 VxcLDA SigX SigC(E0) Z dSigC/dE Sig(E) E-E0 E

4 5.915 -11.255 -12.425 0.861 0.771 -0.296 -11.493 -0.238 5.677
5 8.445 -10.067 -5.858 -3.690 0.772 -0.296 -9.666 0.401 8.846

E^0_gap 2.530
E^GW_gap 3.169
DeltaE^GW_gap 0.639

53



2.6. LESSON 6: THE QUASI–PARTICLE BAND STRUCTURE OF SILICON, IN THE GW
APPROXIMATION

So that the LDA energy gap in Gamma is about 2.53 eV, while the GW correction is about
0.64 eV, so that the GW band gap found is 3.17 eV.

One can compare now what have been obtained to what one can get from the literature.

EXP 3.40 eV Landolt–Boernstein
LDA 2.57 eV L. Hedin, Phys. Rev. 139, A796 (1965)
LDA 2.57 eV M.S. Hybertsen and S. Louie, PRL 55, 1418 (1985)
LDA (FLAPW) 2.55 eV N. Hamada, M. Hwang and A.J. Freeman, PRB 41, 3620 (1990)
LDA (PAW) 2.53 eV B. Arnaud and M. Alouani, PRB 62, 4464 (2000)
LDA 2.53 eV present work
GW 3.27 eV M.S. Hybertsen and S. Louie, PRL 55, 1418 (1985)
GW 3.35 eV M.S. Hybertsen and S. Louie, PRB 34, 5390 (1986)
GW 3.30 eV R.W. Godby, M. Schlueter, L.J. Sham, PRB 37, 10159 (1988)
GW (FLAPW) 3.30 eV N. Hamada, M. Hwang and A.J. Freeman, PRB 41, 3620 (1990)
GW (PAW) 3.15 eV B. Arnaud and M. Alouani, PRB 62, 4464 (2000)
GW (FLAPW) 3.12 eV W. Ku and A.G. Eguiluz, PRL 89, 126401 (2002)
GW 3.17 eV present work

The values are spread over an interval of 0.2 eV. They depend on the details of the calculation.
In the case of pseudopotential calculations, They depend of course on the pseudopotential used.
However, a GW result is hardly meaningful beyond 0.1 eV, in the present state of the art.

54



Chapter 3

ABINIS Help: Help file for the
main code of the ABINIT package

This document explains the i/o parameters and format needed for the main code
(abinis) in the ABINIT package.

The new user is advised to read first the “new user’s guide”, before reading the present file. It
will be easier to discover the present file with the help of the tutorial.

It is worthwhile to print this help file, for ease of reading.
When the user is sufficiently familiarized with ABINIT, the reading of the ~ABINIT/Infos/

tuning file might be useful. For response–function calculations using abinis, the complementary
respfn help file ~ABINIT/Infos/respfn_help.html is needed.

Copyright (C) 1998–2004 ABINIT group (DCA, XG)
This file is distributed under the terms of the GNU General Public License, see ~ABINIT/

Infos/copyright or http://www.gnu.org/copyleft/gpl.txt. For the initials of contributors,
see ~ABINIT/Infos/contributors.

3.1 How to run the code

3.1.1 Introducing the files file

Given an input file (parameters described below) and the required pseudopotential files, the user
must create a “files” file which lists names for the files the job will require, including the main
input file, the main output file, root names for other input, output, or temporary files, and different
pseudopotential file names.

The files file (called for example ab.files) could look like:

• ab_in;

• ab_out;

• abi;

• abo;

• tmp;

• 14si.psp.

In this example:

• the main input file is called “ab in”,

55

http://www.gnu.org/copyleft/gpl.txt


3.1. HOW TO RUN THE CODE

• the main output will be put into the file called “ab out”,

• the name of input wavefunctions (if any) will be built from the root abi (namely abi_WFK,
see later),

• the output wavefunctions will be written to abo_WFK. Other output files might be build from
this root,

• the temporary files will have a name that use the root “tmp” (for example tmp_STATUS),

• the pseudopotential needed for this job is “14si.psp”.

Other examples are given in the ~ABINIT/Test_fast directory. The maximal length of names
for the main input or output files is presently 132 characters. It is 112 characters for the root
strings, since they will be supplemented by different character strings.

If you follow the tutorial, you should go back to the tutorial window now.

3.1.2 Running the code

The main executable files are called abinis (sequential version), or abinip (parallel version). In the
present help file, we will concentrate on the sequential version. There is a brief introduction to
the use of the parallel version in the ~ABINIT/Infos/paral_use file. Supposing that the “files”
file is called ab.files, and that the executable is placed in your working directory, abinis is run
interactively (in Unix) with the command

abinis < ab.files >& log

or, in the background, with the command

abinis < ab.files >& log &

where standard out and standard error are piped to the log file called “log” (piping the standard
error, thanks to the “&” sign placed after “¿” is really important for the analysis of eventual
failures, when not due to ABINIT, but to other sources, like disk full problem ...). The user can
specify any names he/she wishes for any of these files. Variations of the above commands could
be needed, depending on the flavor of UNIX that is used on the platform that is considered for
running the code.

If you follow the tutorial, you should go back to the tutorial window now.

3.1.3 The underlying theoretical framework and algorithms

See the “bibliography” file.
The methods employed in this computer code to solve the electronic structure problem are de-

scribed in part in different review papers as well as research papers. The code is an implementation
of the Local Density Approximation to the Density Functional Theory, based upon a plane wave
basis set and separable pseudopotentials. The iterative minimization algorithm is a combination
of fixed potential preconditioned conjugate gradient optimization of wavefunction and a choice of
different algorithms for the update of the potential, one of which is a potential–based conjugate
gradient algorithm.

The representation of potential, density and wavefunctions in real space will be done on a
regular 3D grid of points. Its spacing will be determined by the cut–off energy (see the input
variable “ecut”) of the planewave basis in reciprocal space. This grid of points will also be the
starting point of Fast Fourier Transforms between real and reciprocal space. The number of such
points, called “ngfft”, should be sufficiently large for adequate representation of the functions,
but not too large, for reason of computational efficiency. The trade–off between accuracy and
computational efficiency is present in many places in the code, and addressed briefly at the end of
the present help file.

56



CHAPTER 3. ABINIS HELP

We recommend a good introduction to many different concepts valid for this code, available in
a Reviews of Modern Physics article, “Iterative minimization techniques for ab initio total–energy
calculations: molecular dynamics and conjugate gradients”, M. C. Payne, M. P. Teter, D. C. Allan,
T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045–1097 (1992). This paper does
NOT reflect the present status of the code. ABINIT is closer in spirit to the paper of of Kresse
and Furthmuller, see the bibliography list (except that it does not use ultrasoft pseudopotentials,
and that response functions have been implemented in ABINIT.)

3.2 The input file

3.2.1 Format of the input file

Note that this input file was called ab_in in the example of section 1.1. We first explain the
content of the input file without use of the “multi–dataset” possibility (that will be explained in
section 3.3).

The parameters are input to the code from a single input file. Each parameter value is provided
by giving the name of the input variable and then placing the numerical value(s) beside the name,
separated by one or more spaces. Depending on the input variable, the numerical value may be an
integer or a real number (internal representation as double precision number), and may actually
represent an array of values. If it represents an array, the next set of numbers separated by spaces
are taken as the values for the array.

Do NOT separate a minus sign from the number to which it applies.
Do NOT use tabs.
NOTE THAT NO LINE OF THE INPUT FILE MAY EXCEED 132 CHARACTERS. That

is, only the first 132 characters of each line of the input file will be read and parsed for input
variables and their values.

The names of all the parameters can be found in the input variables file. The definitions of all
the parameters can be found in:

• Basic variables, VARBAS;

• Developpement variables, VARDEV;

• Geometry builder + symmetry related variables, VARGEO;

• Ground–state calculation variables, VARGS;

• Files handling variables, VARFIL;

• Parallelisation variables, VARPAR;

• Response Function variables, VARRF;

• Structure optimization variables, VARRLX.

In the actual input file, these parameters may be given in any order desired and more than
one may be given per line. Spaces are used to separate values and additional spaces are ignored.
An as example of input, the parameter for length scales is called “acell” and is an array acell(3)
for the lengths of the primitive translations in bohr atomic units. To input a typical Si diamond
lattice one would have the line

acell 10.25311 10.25311 10.25311

in the input file. This may equivalently be written

acell 3*10.25311

57



3.2. THE INPUT FILE

and will still be parsed correctly.
Multiple spaces are ignored, as is any text which does not contain the character strings which

correspond to some input parameters. In case of arrays, only the needed numbers will be consid-
ered, and the eventual numbers after those needed will also be ignored. For example,

natom 3 # This gives the number of atoms
typat 1 1 2 2 3 # typat(1:natom) gives the type of each atom : only

# the three first data are read, since natom=3

A given variable is identified by the parser by having at least one blank before it and af-
ter it (again, multiple blanks are irrelevant). ABINIT has also some (very limited) interpretor
capabilities:

• It can identify one slash sign (/) being placed between two numbers (without a separating
blank) as being the definition of a fraction (e.g. 1/3 will be interpreted as 0.33333333333333d0);

• It can identify sqrt(...) or –sqrt(...) as being the definition of a square root, when applied to
one valid number — also without a separating blank — (e.g. –sqrt(0.75) will be interpreted
as –0.8660254038d0);

• Note, however, that these capabilities are NOT recursive, and cannot be used one with the
other (e.g. sqrt(3/4) is invalid).

To include comments it is recommended that they be placed to the right of the comment
characters # or !; anything to the right of a “#” or a “!” on any line is simply ignored by the
parser. Additional text, not preceeded by a “#” or a “!” would not otherwise cause trouble unless
the text inadvertantly contained character strings which were the same as variable names (e.g.
“acell”). The characters “#” or “!” can also be used to “store” old values of variables or place
anything else of convenience into the file in such a way as to be ignored by the parser when the
data is read. Case is irrelevant as the entire input string is mapped to upper case before parsing,
to remove case sensitivity. More than one parameter per line may be given. If a given parameter
name is given more than once in the input file, an error message is printed, and the code stops.

If you follow the tutorial, you should go back to the tutorial window now.

3.2.2 More about ABINIT input variables

In each section of the ABINIT input variables files, a generic information on the input variable is
given: a mnemonics, some “characteristics”, the variable type, and the default. Then, follows the
description of the variable.

The mnemonics is indicated when available.
The “characteristics” can be of different types: DEVELOP, RESPFN, GEOMETRY BUILDER,

SYMMETRISER, SYMMETRY FINDER, NO MULTI, EVOLVING, ENERGY, LENGTH. We
now explain each of these classes.

‘DEVELOP’ refers to input variables that are not used in production runs, but only during
development time. For non developers, it is strongly advised to skip them.

Some input variables are related to response function features, and are indicated ‘RESPFN’.
Detailed explanations related to response function features are to be found in the complementary
respfn help file ~ABINIT/Infos/respfn_help.html. The initials RF are used for ‘response func-
tion’, and non–response–function are often referred to as GS (for ground–state), although this
latter designation is not really satisfactory.

There are also parameters related to the geometry builder, a preprocessor of the input file,
aimed at easing the work of the user when there are molecules to be manipulated (rotation and
translation), or group of atoms to be repeated. The indication ‘GEOMETRY BUILDER’ is given
for them. These can also be skipped for the first few steps in the use of the code. Indeed,
it should be easy to set up the geometry of systems with less than 20–40 atoms without this

58



CHAPTER 3. ABINIS HELP

geometry builder. Even for larger systems, its functionalities could eventually be of no help. For
a step–to–step description of this geometry builder, look at the variable ‘nobj’.

Alternatively to the geometry builder, there is also a symmetriser. It allows to generate the full
set of atoms in the primitive cell from the knowledge of the symmetry operations and the atoms in
the asymetric cell. It also allows to generate the symmetry operations from the knowledge of the
number of the space group according to the international crystallographic tables. The indication
‘SYMMETRISER’ is given for the variables related to its use. Look at the variable ‘spgroup’. You
may find in the space group help file the crystallographic equivalence of the parameters belonging
to the symmetriser.

Still as an alternative to the geometry builder and the symmetriser, if all the coordinates of
the atoms are given, the code is able to deduce all symmetry operations leaving the lattice and
atomic sublattices invariant, see ‘SYMMETRY FINDER’.

Most of the variables can be used in the multi–dataset mode (see section 3.3), but those that
must have a unique value throughout all the datasets are signaled with the indication ‘NO MULTI’.

Most of the input variables do not change while a run is performed. Some of them, by contrast,
may evolve, like the atomic positions, the atomic velocities, the cell shape, and the occupation
numbers. Their echo, after the run has proceeded, will of course differ from their input value.
They are signaled by the indication ‘EVOLVING’.

The use of the atomic unit system (e.g. the Hartree for energy, about 27.211 eV, and the Bohr
for lengths about 0.529 Angstroms) is strictly enforced within the code. However, the dimension
of some input variables can be specified and read correctly. At present, this applies to two types of
variables: those that have the dimension of an energy, and those that have a dimension of length.
The first class of variables have the characteristics ‘ENERGY’, and can be specified in atomic
units (Hartree), or electron–volts, or Rydbergs, or even Kelvin. The second class of variables have
the characteristics ‘LENGTH’, and can be specified in atomic units (Bohr) and angstrom. The
abinit parser recognize a dimension if it is specified after the list of numbers following the input
variable keyword, in the input file. The specification can be upper or lower case, or a mix thereof.
Here is the list of recognized chains of characters:

• ‘Ry ’ ⇒ Rydberg (for energies);

• ‘eV ’⇒ electron–volts (for energies);

• ‘K ’ ⇒ Kelvin (for energies);

• ‘Angstr...’ ⇒ Angstrom (for lengths).

Except in the case of ‘Angstr’, the abbreviation must be used (i.e. ‘Rydberg’ will not be
recognized presently). Other character chains, like “au” (for atomic units) or “Hartree”, or “Bohr”
are not recognized, but make the parser choose (by default) atomic units, which is the correct
behaviour. Example:

acell 8 8 8 angstrom
ecut 8 Ry
tsmear 1000 K

or

acell 3*10 Bohr ecut 270 eV tsmear 0.01

The use of the atomic units is mandatory for other dimensioned input variables, like the
tolerance on forces (toldff ), parameters that define an ‘object’ (objaax, objbax, objatr, objbtr), and
the initial velocity of atoms (vel — if needed).

The initial atomic positions can be input in Bohr or Angstrom through ‘xcart’, but also,
independently, in Angstrom through ‘xangst’, or even in reduced coordinates, through ‘xred’.
Reduced cartesian coordinates must be used for the eventual translations accompanying symmetry
operations (tnons).

59



3.2. THE INPUT FILE

In addition to giving the input variables, the input file can be useful for another purpose:
placing the word “exit” on the top line will cause the job to end smoothly on the very next
iteration. This functions because the program closes and reopens the input file on every iteration
and checks the top line for the keyword “exit”. THE WORD MUST BE PLACED WITH SPACES
(BLANKS) ON BOTH SIDES. Thus placing exit on the top line of the input file WHILE THE
JOB IS ALREADY RUNNING will force the job to end smoothly on the very next iteration. On
some machines, this does not work always (we do not know why...). Another possibility is offered
: one can create a file named “abinit.exit” in the directory where the job was started. The code
should also smoothly end. In both cases, the stop is not immediate. It can take a significant
fraction (about 20% at most) of one SCF step to execute properly the instruction still needed.

If you follow the tutorial, you should go back to the tutorial window now.

3.2.3 The multi–dataset mode

Until now, we have assumed that the user wants to make computations corresponding to one set
of data: for example, determination of the total energy for some geometry, with some set of plane
waves and some set of k–points.

It is often needed to redo the calculations for different values of some parameter, letting all the
other things equal. As typical examples, we have convergence studies needed to determine which
cut–off energy gives the needed accuracy. In other cases, one makes chains of calculations in order
to compute the band structure: first a self–consistent calculation of the density and potential,
then the eigenenergy computation along different lines.

For that purpose, the multi–dataset mode has been implemented.
It allows the code to treat, in one run, different sets of data, and to chain them. The number

of datasets to be treated is specified by the variable ndtset, while the indices of the datasets (by
default 1, 2, 3, and so on) can be eventually provided by the array jdtset.

For each dataset to be treated, characterized by some index, each input variable will determined
by the following rules (actually, it is easier to understand when one looks at examples, see below):

1. ABINIT looks whether the variable name (e.g. ecut), appended with the index of the dataset
(e.g. jdtset=2), exists (e.g. “ecut2”) . It will take the data that follows this keyword, if it
exist;

2. If this modified variable name does not exist, it will look whether a metacharacter, a series
or a double–loop data set has been defined, see sections 3.4 or 3.5;

3. If the variable name appended with the index of the dataset does not exist, and if there is
no series nor double–loop dataset for this keyword, it looks for an occurence of the variable
name without any index appended, and take the corresponding data. (This corresponds to
the single dataset mode);

4. If such occurences do not exist, it takes the default value. (Also, similar to the single dataset
mode).

1st example.

ndtset 2
acell 8 8 8
ecut1 10
ecut2 15

means that there are 2 datasets: a first in which

acell 8 8 8 ecut 10

has to be used, and a second in which

acell 8 8 8 ecut 15

60



CHAPTER 3. ABINIS HELP

has to be used.
2nd example.

ndtset 2 jdtset 4 5

acell 8 8 8
acell5 10 10 10
ecut1 10
ecut2 15
ecut3 20
ecut4 25
ecut5 30

this means that there are still two datasets, but now characterized by the indices 4 and 5, so
that the first run will use the generic “acell”, and “ecut4”:

acell 8 8 8 ecut 25

and the second run will use “acell5” and “ecut5”:

acell 10 10 10 ecut 30

Note that ecut1, ecut2 and ecut3 are not used.

3.2.4 Defining a series

Rules (2) is split in three parts: (2a), (2b) and (2c). Series relate with (2b):

(2b) If the variable name appended with the index of the dataset does not exist, the
code looks whether a series has been defined for this keyword.

There are two kinds of series:

• arithmetic series (constant increment between terms of the series);

• geometric series (constant ratio between terms of the series).

The first term of the series is defined by the keyword appended with a colon (e.g. ecut:), while
the increment of an arithmetic series is defined by the keyword appended with a plus (e.g. ecut+),
and the factor of a geometric series is defined by the keyword appended with a times (e.g. ecut* ).

If the index of the dataset is 1, the first term of the series is used, while for index N, the
appropriate input data is obtained by considering the Nth term of the series.

3rd example

ndtset 6
ecut1 10
ecut2 15
ecut3 20
ecut4 25
ecut5 30
ecut6 35

is equivalent to

ndtset 6 ecut: 10 ecut+ 5

In both cases, there are six datasets, with increasing values of ecut.

61



3.2. THE INPUT FILE

3.2.5 Defining a double loop dataset

To define a double loop dataset, one has first to define the upper limit of two loop counters, thanks
to the variable udtset. The inner loop will execute from 1 to udtset(2), and the outer loop will
execute from 1 to udtset(1). Note that the largest value for udtset(1) and udtset(2) is 9 presently.

The value of ndtset must be coherent with udtset (it must equal the product udtset(1)*udtset(2)).
A dataset index is created by the concatenation of the outer loop index and the inner loop

index. For example, if udtset(1) is 2 and udtset(2) is 4, the index will assume the following values:
11, 12, 13, 14, 21, 22, 23, and 24.

Independently of the use of udtset, rules (2a) and (2c) will be used to define the value of an
input variable:

(2a) The question mark “?” can be used as a metacharacter, replacing any digit from
1 to 9, to define an index of a dataset. For example, ecut?1 means that the input value
that follows it can be used for ecut for the datasets 01, 11, 21, 31, 41, 51, 61, 71, 81,
and 91.

(2c) If the variable name appended with the index of the dataset does not exist, the
code looks whether a double–loop series has been defined for this keyword. Series can
be defined for the inner loop index or the outer loop index. Two signs will be appended
to the variable name (instead of one in the simple series case). One of these signs must
be a question mark “?”, again used as a metacharacter able to assume the values 1 to
9. If it is found in the first of the two positions, it means that the series does not care
about the outer loop index (so the values generated are equal for all outer loop index
values). If it is found in the second of the two positions, the series does not care about
the inner loop index. The other sign can be a colon, a plus or a times, as in the case
of the series defined in (2a), with the same meaning.

Rule (1) has precedence over them, they have precedence over rules (3) or (4), rule (2a) has
precedence over rules (2b) or (2c) and the two latter cannot be used simultaneously for the same
variable.

4th example

ndtset 6 udtset 2 3
acell1? 10 10 10
acell2? 15 15 15
ecut?: 5 ecut?+ 1

is equivalent to

ndtset 6 jdtset 11 12 13 21 22 23
acell11 10 10 10 ecut11 5
acell12 10 10 10 ecut12 6
acell13 10 10 10 ecut13 7
acell21 15 15 15 ecut21 5
acell22 15 15 15 ecut22 6
acell23 15 15 15 ecut23 7

More examples can be found in the directory Test_v1, cases 59 and later.

3.2.6 File names in the multi–dataset mode

The root names for input and output files (potential, density, wavefunctions and so on) will receive
an appendix : ‘ DS’ followed by the index of the dataset. See section 4.

The ‘get’ variables can be used to chain the calculations.
Until now, there are eight of them: getwfk, getwfq, getddk, get1wf, getden, getcell, getxred and

getxcart.

62



CHAPTER 3. ABINIS HELP

• getwfk allows to take the output wavefunctions of a previous dataset and use them as input
wavefunctions;

• getwfq, getddk and get1wf do similar things for response function calculations;

• getden does the same for the density; getcell does the same for acell and rprim;

• getxred and getxcart do the same for the atomic positions, either in reduced coordinates, or
in cartesian coordinates.

The different variables corresponding to each dataset are echoed using the same indexing
convention as for the input step. For the last echo of the code variables, some output variables
are also summarized, using the same conventions:

• etotal (total energy);

• fcart (cartesian forces);

• strten (the stress tensor).

If you follow the tutorial, you should go back to the tutorial window now.

3.3 The “files” file

Note: This “files” file is called ab. files in section 1.1.
Contains the file names or root names needed to build file names. These are listed below: there

are 5 names or root names for input, output and temporaries, and then a list of pseudopotentials.
These names may be provided from unit 05 interactively during the run but are more typically
provided by piping from a file in unix (the “files” file).

ab in: Filename of file containing the input data, described in the preceeding sections.
ab out: Filename of the main file in which formatted output will be placed (the main output

file). Error messages and other diagnostics will NOT be placed in this file, but sent to unit 06
(terminal or log file); the unit 06 output can be ignored unless something goes wrong. The code
repeats a lot of information to both unit 06 and to the main output file. The unit 06 output is
intended to be discarded if the run completes successfully, with the main output file keeping the
record of the run in a nicer looking format.

abi: The other files READ by the code will have a name that is constructed from the root
“abi”. This apply to optionally read wavefunction, density or potential files. In the multi–dataset
mode, this root will be complemented by ‘ DS’ and the dataset index. The list of possible input
files, with their name created from the root ‘abi’ is the following (a similar list exist when ‘ DS’
and the dataset index are appended to ‘abi’):

• abi WFK
filename of file containing input wavefunction coefficients created from an earlier run (with
nqpt=0). Will be opened and read if irdwfk is 1. The wavefunction file is unformatted
and can be very large. Warning: in the multi–dataset mode, if getwfk is non–zero, a
wavefunction file build from abo will be read.

• abi WFQ
filename of file containing input wavefunction coefficients created from an earlier run (with
nqpt=1), as needed for response function salculations. The wavefunction file is unformatted
and can be very large. Warning: in the multi–dataset mode, if getwfk is non–zero, a
wavefunction file build from abo will be read.

• abi 1WFxx
filename of file containing input first–order wavefunctions created from an earlier RF run.
xx is the index of the perturbation.

63



3.3. THE “FILES” FILE

• abi DEN
filename of file containing density created from an earlier run. See explanations related to
negative values of iscf. This file is also unformatted. Warning: in the multi dataset mode,
if getwfk is non–zero, a density file build from abo will be read.

• abi HES
filename of file containing an approximate hessian, for eventual (re)initialisation of Broyden
minimisation. See brdmin.f routine. The use of restartxf is preferred.

abo: Except “ab out” and “log”, the other files WRITTEN by the code will have a name
that is constructed from the root “abo”. This apply to optionally written wavefunction, density,
potential, or density of states files. In the multi–dataset mode, this root will be complemented by
‘ DS’ and the dataset index. Also in the multi–dataset mode, the root “abo” can be used to build
the name of input files, thanks to the ‘get’ variables. The list of possible input files, with their
name created from the root ‘abo’ is the following (a similar list exists when ‘ DS’ and the dataset
index are appended to ‘abo’):

• abo WFK
Filename of file containing output wavefunction coefficients, if nqpt=0. The wavefunction
file is unformatted and can be very large.

• abo WFQ
Same as abo WFK, but for the case nqpt=1. The wavefunctions are always output, either
with the name abo WFK, or with the name abo WFQ.

• abo 1WFxx
Same as abo WFK, but for first–order wavefunctions, xx is the index of the perturbation,
see the section 6.3 of the respfn_help.html file.

• abo DDB
The derivative database, produced by a response–function dataset, see the section 6.5 of the
respfn_help.html file.

• abo DEN
Filename of file containing density, in the case ionmov=0. See the keyword prtden. This file
is unformatted, but can be read by cut3d.

• abo TIMx DEN
Filenames of files containing density, in the case ionmov 6=0. The value of “x” after “TIM”
is described hereafter. See the keyword prtden. This file is unformatted, but can be read by
cut3d.

• abo POT
Filename of file containing Kohn–Sham potential See the keyword prtopt. This file is unfor-
matted, but can be read by cut3d.

• abo TIMx POT
Filenames of files containing Kohn–Sham potential in the case ionmov 6=0. The value of “x”
after “TIM” is described hereafter. See the keyword prtopt. This file is unformatted, but
can be read by cut3d.

• abo DOS
Filename of file containing density of states. See the keyword prtdos. This file is formatted.

• abo TIMx DOS
Filenames of files containing the density of states in the case prtdos=2 and ionmov=1 or 2.
The value of “x” after “TIM” is described hereafter. See also the keyword prtdos. This file
is formatted.

64



CHAPTER 3. ABINIS HELP

• abo GEO
Filename of file containing the geometrical analysis (bond lengths and bond angles) in the
case ionmov=0. See the keyword prtgeo. This file is formatted.

• abo TIMx GEO
Filenames of files containing the geometrical analysis (bond lengths and bond angles) in the
case ionmov=1 or 2. The value of “x” after “TIM” is described hereafter. See also the
keyword prtgeo. This file is formatted.

• abo CML.xml
filename of file containing the Chemical Markup Language description of the system (crys-
tallographic data, symmetry data, atomic symbols and reduced coordinates) in the case
ionmov=0. See the keyword prtcml. This file is formatted.

• abo TIMx GEO
Filenames of files containing the Chemical Markup Language description of the system (crys-
tallographic data, symmetry data, atomic symbols and reduced coordinates) in the case ion-
mov=1 or 2. The value of “x” after “TIM” is described hereafter. See also the keyword
prtcml. This file is formatted.

• abo STO
Filename of file containing output wavefunction coefficients, if nbandkss/=0. This wave-
function file is unformatted and can be very large. Its purpose is to start a GW calcula-
tion using M. Torrent’s code. A different format than for abo WFK is used, see the file
~ABINIT/Infos/format_STO.

When ionmov/=0, the POT, DEN, GEO, or CML.xml files are output each time that a
SCF cycle is finished. The “x” of TIMx aims at giving each of these files a different name. It is
attributed as follows:

• case ionmov==1: there is an initialization phase, that takes 4 calls to the SCF calculation.
The value of x will be A, B, C, and D. Then, x will be 1, 2, 3 ... , actually in agreement
with the value of itime (see the keyword ntime);

• other ionmov cases: the initialisation phase take only one SCF call. The value of x will be
0 for that call. Then, the value of x is 1, 2, 3 ... in agreement with the value of itime (see
the keyword ntime).

tmp: The temporary files created by the codes will have a name that is constructed from the
root “tmp”. tmp should usually be chosen such as to give access to a disk of the machine that
is running the job, not a remote (NFS) disk. Under Unix, the name might be something like
/tmp/user_name/temp. The most important temporary files, with their name created from the
root “tmp” is the following:

• tmp FFT
not created if mffmem==1, contains a few arrays defined in real space on the FFT grid.

• tmp KG
not created if mkmem=nkpt, contains the data on G vectors inside the sphere around the
different k–points.

• tmp KGS
created if iprcel 6=0, contains the data on G vectors inside the sphere around the different
k–points, for the computation of the susceptibility.

• tmp WF1 and

• tmp WF2
not created if mkmem=nkpt, contains the wavefunctions in the process of the calculation.

65



3.4. THE PSEUDOPOTENTIAL FILES

• tmp STATUS
gives the status of advancement of the calculation, and is updated very frequently.

psp1: filename of first pseudopotential input file. The pseudopotential data files are formatted.
There must be as many filenames provided sequentially here as there are types of atoms in the
system, and the order in which the names are given establishes the identity of the atoms in the
unit cell. (psp2, psp3, ... )

If you follow the tutorial, you should go back to the tutorial window now.

3.4 The pseudopotential files

The following section describes the file structure used for the pseudopotential files with different
formats. Actually, no real understanding of these files is needed to run the code, but for different
other reasons, it might be useful to be able to understand the file structures. Different format
are possible (labelled 1 to 6 presently) The associated internal variable is called pspcod. Example
of use are found in ~ABINIT/Test_v1. Informations on the file structure can be found in the
~ABINIT/Infos/Psp_infos directory.

• pspcod=1: Troullier–Martins pseudopotentials, generated by D. C. Allan and A. Khein, see
~ABINIT/Infos/Psp_infos/psp1.info;

• pspcod=2: Goedecker–Teter–Hutter (GTH) pseudopotentials. See Phys. Rev. B 54, 1703
(1996) if needed;

• pspcod=3: Hartwigsen–Goedecker–Hutter pseudopotentials. See Phys. Rev. B 58, 3641
(1998) if needed, and the file ~ABINIT/Infos/Psp_infos/psp3.info.

• pspcod=4 or 5: old format pseudopotentials, see ~ABINIT/Infos/Psp_infos/psp45.info.

• pspcod=6: pseudopotentials from the fhi98pp code, see ~ABINIT/Infos/Psp_infos/psp6.
info.

3.5 The different output files

Explanation of the output from the code.
Output from the code goes to several places listed below.

3.5.1 The log file

The “log” file (this is the standard UNIX output file, and corresponds to Fortran unit number
06): a file which echoes the values of the input parameters and describes various steps of the
calculation, typically in much more detail than is desired as a permanent record of the run. This
log file is intended to be informative in case of an error or for a fuller description of the run.
For a successful run the user will generally delete the log file afterwards. There are four types of
exception messages: ERROR, BUG, WARNING and COMMENT messages.

ERROR and BUG messages cause the code to stop, immediately, or after a very small delay.
An ERROR is attributed to the user, while a BUG is attributed to the developer.

A WARNING message indicates that something happened that is not as expected, but this
something is not so important as to make the code stop. A COMMENT message gives some
information to the user, concerning something unusual. None of them should appear when the
run is completely normal.

After a run is completed, always have a look at the end of the log file, to see whether an
ERROR or a BUG occurred.

Also, the code gives the number of WARNING or COMMENT it issued. It is advised to
read at least the WARNING messages, during the first month of ABINIT use.

If you follow the tutorial, you should go back to the tutorial window now.

66



CHAPTER 3. ABINIS HELP

3.5.2 The main output file

The main output file is a formatted output file to be kept as the permanent record of the run.
Note that it is expected not to exist at the beginning of the run: If a file with the name

specified in the “files” file already exists, the code will generate, from the given one, another
name, appended with .A. If this new name already exists, it will try to append .B, and so on,
until .Z. Then, the code stops, and asks you to clean the directory.

The main output file starts with a heading:

• version number and specified platform;

• copyright notice and distribution licence;

• date;

• echo of “files” file (except pseudopotential name).

Then, for each dataset, it reports the point symmetry group and Bravais lattice, and the
expected memory needs. It echoes the input data, and report on checks of data consistency for
each dataset.

If you follow the tutorial, you should go back to the tutorial window now.

3.5.3 More on the main output file

Then, for each dataset, the real computation is done, and the code will report on some initialisa-
tions, the SCF convergence, and the final analysis of results for this dataset. Each of these phases
is now described in more details.

The code reports:

• the real and reciprocal space translation vectors (Note: the definition of the reciprocal vector
is such that RiGj = deltaij);

• the volume of the unit cell;

• the ratio between linear dimension of the FFT box and the sphere of plane waves, called
“boxcut”;

• It must be above 2 for exact treatment of convolutions by FFT. ngfft has been automatically
chosen to give a boxcut value larger than 2, but not much larger, since more CPU time is
needed for larger FFT grids;

• the code also mention that for the same FFT grid you might treat (slightly) larger ecut (so,
with a rather small increase of CPU time);

• the heading for each pseudopotential which has been input;

• from the inwffil subroutine, a description of the wavefunction initialization (random num-
ber initialization or input from a disk file), that is, a report of the number of planewaves
(npw) in the basis at each k–point;

• from the setup2 subroutine, the average number of planewaves over all k–points is reported
in two forms, arithmetic average and geometric average.

Until here, the output of a ground–state computation is identical to the one of a response–
function calculation. See the respfn_help document for the latter, especially section 6.2.

Next the code reports information for each SCF iteration:

• the iteration number;

• the total energy (Etot) in Hartree;

67



3.5. THE DIFFERENT OUTPUT FILES

• the change in Etot since last iteration (deltaE);

• the maximum squared residual residm over all bands and k–points (residm - the residual
measures the quality of the wavefunction convergence);

• the squared residual of the potential in the SCF procedure (vres2);

• the maximum change in the gradients of Etot with respect to fractional coordinates (diffor,
in Hartree);

• the rms value of the gradients of Etot with respect to fractional coordinates (maxfor, in
hartree). The latter two are directly related to forces on each atom.

• Then comes an assessment of the SCF convergence: the criterion for fulfillment of the SCF
criterion (defined by toldfe, toldff, tolwfr or tolvrs) might be satisfied or not ...

• Then the stresses are reported.

This ends the content of a fixed atomic position calculation.
Many such blocks can follow.
When the atomic positions have been eventually relaxed, according to the value of ntime, the

code output more information:

• The squared residuals for each band are reported, k–point by k–point.

• Then the fractional or reduced coordinates are given,

• followed by the energy gradients,

• followed by the cartesian coordinates in Angstroms,

• followed by the cartesian forces in Hartree/Bohr and eV/Angstrom.

• Also are given the rms force (frms) and the maximum absolute value of any force component
(max).

• Next are the length scales of the unit cell in Bohr and in Angstroms.

• Next are the eigenvalues of each band for each k–point, in eV or hartree or both depending
on the choice of enunit.
NOTE that the average electrostatic potential of a periodically repeated cell is UNDE-
FINED.
In the present implementation, the average Hartree potential and local potential are imposed
to be zero, but not the average exchange–correlation potential. This definition gives some
meaning to the absolute values of eigenenergies, thanks to Janak’s theorem: they are deriva-
tives of the total energy with respect to occupation number. Indeed, the G = 0 contributions
of the Hartree, local potential and ion–ion to the total energy is independent of the occu-
pation number in the present implementation. With this noticeable exception, one should
always work with differences in eigenenergies, as well as differences between eigenenergies
and the potential. For example, the absolute eigenenergies of a bulk cell should not be used
to try to predict a work function. The latter quantity should be obtained in a supercell
geometry, by comparing the Fermi energy in a slab and the potential in the vacuum in the
same supercell.

• Next are the minimum and maximum values for charge density, and next smaller or larger
values (in order to see degeneracies).

• Next are the components of the total energy broken down into:

– kinetic,

68



CHAPTER 3. ABINIS HELP

– Hartree,

– exchange and correlation (xc),

– local pseudopotential,

– nonlocal pseudopotential,

– local pseudopotential “core correction”, and

– Ewald energies.

• Next is the stress tensor, (1/ucvol)d(Etot)/d(straina,b), for Etot = total energy per unit
cell and a, b are x, y or z components of strain. The stress tensor is given in Cartesian
coordinates in Hartree/Bohr3 and GPa. The basics of the stress tensor are described in O.
H. Nielsen and Richard M. Martin, see the bibliography file.

Having finished all the calculations for the different datasets, the code echoes the parameters
listed in the input file, using the latest values e.g. for xred, vel, and xcart, and supplement them
with the values obtained for the total energy, the forces and stresses, as well as occupation numbers.
The latter echoes are very convenient for a quick look at the result of calculation!

This is followed finally by the timing output: both “cpu” time and “wall clock” time as provided
by calls within the code. The total cpu and wall clock times are reported first, in seconds, minutes,
and hours for convenient checking at a glance. Next are the cpu and wall times for the principal
time–consuming subroutine calls, each of which is independent of the others. The sum of these
times usually accounts for about 90% of the run time.

The main subroutines, for BIG jobs, are

1. fourwf: the subroutine which performs the fast fourier transform for the wavefunctions;

2. fourdp: the subroutine which performs the fast fourier transform related to density and
potential;

3. rhohxc: computes the Hartree and exchange-correlation energy and potential and sometimes
derivative of potential; only the XC timing is reported, excluding time connected to the
FFTs: xc:pot/=fourdp.

4. nonlop: computes < G|Vnon-local|C > the matrix elements of the nonlocal pseudopotential;

5. projbd: Gram–Schmidt orthogonalization.

In case of small jobs, other (initialisation) routines may take a larger share, and the sum of
the times for the principal time–consuming subroutine calls will not make 90% of the run time...

If the long printing option has been selected (prtvol=1), the code gives much more information
in the whole output file. These should be rather self–explanatory, usually. Some need more
explanation.

In particular the cpu and wall times for major subroutines which are NOT independent of each
other; for example vtorho conducts the loop over k–points and calls practically everything else.
In case of a ground state calculation, at fixed atomic positions, these subroutines are

1. abinit: the main routine;

2. driver: select ground state or response calculations;

3. gstate: the driver of the ground state calculations;

4. scfcv: the SCF cycle driver;

5. vtorho: compute the density from the potential (it includes a loop over spins and k–points);

6. vtowfk: compute the wavefunctions at one particular k-point (includes a non self consistent
loop, and a loop over bands);

69



3.5. THE DIFFERENT OUTPUT FILES

7. cgwf : optimize one wavefunction in a fixed potential;

8. getghc: computes < G|H|C >, that is, applies the Hamiltonian operator to an input vector.

If you follow the tutorial, you should go back to the tutorial window now.

3.5.4 The header

The wavefunction files, density files, and potential files all begins with the same records,
called the “header”. This header is treated using a hdr type datastructure inside ABINIT. There
are dedicated routines inside ABINIT for initializing a header, updating it, reading the header
of an unformatted disk file, writing a header to an unformatted disk file, echoing a header to a
formatted disk file, cleaning a header datastructure.

The header is made of 4+npsp unformatted records, obtained by the following Fortran90
instructions (format 4.1):

write(unit=header) codvsn,headform,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nspden,nspinor,nsppol,nsym,npsp,ntypat,occopt,pertcase,&
& ecut,ecutsm,ecut_eff,qptn(1:3),rprimd(1:3,1:3),stmbias,tphysel,tsmear
write(unit=header) istwfk(1:nkpt),nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),so_typat(1:ntypat),symafm(1:nsym),symrel(1:3,1:3,1:nsym),&
& typat(1:natom),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucltypat(1:ntypat)
do ipsp=1,npsp
! (npsp lines, 1 for each pseudopotential ; npsp=ntypat, except if
! alchemical pseudo-atoms)
write(unit=unit) title,znuclpsp,zionpsp,pspso,pspdat,pspcod,pspxc
enddo
!(final record: residm, coordinates, total energy, Fermi energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal,fermie

where the type of the different variables is:

character*6 :: codvsn
integer :: headform,fform
integer :: bantot,date,intxc,ixc,natom,ngfft(3),nkpt,
nspden,nspinor,nsppol,nsym,ntypat,occopt,pertcase
double precision :: acell(3),ecut,ecutsm,ecut_eff,qptn(3),rprimd(3,3),&
& tphysel,tsmear
integer :: istwfk(nkpt),nband(nkpt*nsppol),npwarr(nkpt),so_typat(ntypat),&
& stmbias,&
& symafm(nsym),symrel(3,3,nsym),typat(natom)
double precision :: kpt(3,nkpt),occ(bantot),tnons(3,nsym),znucltypat(ntypat)
character*132 :: title
double precision :: znuclpsp,zionpsp
integer :: pspso,pspdat,pspcod,pspxc,lmax,lloc,mmax=integers
double precision :: residm,xred(3,natom),etotal,fermie

NOTE: etotal is set to its true value only for density and potential files. For other files, it is
set to 1.0d20.

NOTE: ecut eff = ecut * dilatmx2.
NOTE: In pre–v4.1, fermie is set to zero for non–metallic occupation numbers, or for non–

self–consistent calculations. In v4.1 and later, for all cases where occupation numbers are defined
(that is, positive iscf, and iscf =−3), and for non–metallic occupation numbers, the Fermi energy
is set to the highest occupied eigenenergy.

70



CHAPTER 3. ABINIS HELP

The header might differ for different versions of ABINIT. The pre–v4.2 formats are described
below. Note however, that the current version of ABINIT is able to read all these formats (not to
write them).

The format for version 4.1 was:

write(unit=header) codvsn,headform,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nspden,nspinor,nsppol,nsym,npsp,ntypat,occopt,pertcase,&
& ecut,ecutsm,ecut_eff,qptn(1:3),rprimd(1:3,1:3),tphysel,tsmear
write(unit=header) istwfk(1:nkpt),nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),so_typat(1:ntypat),symafm(1:nsym),&
& symrel(1:3,1:3,1:nsym),typat(1:natom),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucltypat(1:ntypat)
do ipsp=1,npsp
! (npsp lines, 1 for each pseudopotential ; npsp=ntypat, except if
! alchemical pseudo-atoms)
write(unit=unit) title,znuclpsp,zionpsp,pspso,pspdat,pspcod,pspxc
enddo
!(final record: residm, coordinates, total energy, Fermi energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal,fermie

The format for version 4.0 was:

write(unit=header) codvsn,headform,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nspden,nspinor,nsppol,nsym,npsp,ntypat,occopt,&
& ecut,ecutsm,ecut_eff,rprimd(1:3,1:3),tphysel,tsmear
write(unit=header) istwfk(1:nkpt),nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),so_typat(1:ntypat),symafm(1:nsym),&
& symrel(1:3,1:3,1:nsym),typat(1:natom),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucltypat(1:ntypat)
do ipsp=1,npsp
! (npsp lines, 1 for each pseudopotential ; npsp=ntypat, except if
! alchemical pseudo-atoms)
write(unit=unit) title,znuclpsp,zionpsp,pspso,pspdat,pspcod,pspxc
enddo
!(final record: residm, coordinates, total energy, Fermi energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal,fermie

The format for version 3.4 was:

write(unit=header) codvsn,headform,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nspden,nspinor,nsppol,nsym,npsp,ntypat,occopt,ecut_eff,rprimd(1:3,1:3)
write(unit=header) nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),symrel(1:3,1:3,1:nsym),typat(1:natom),istwfk(1:nkpt),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucltypat(1:ntypat)
do ipsp=1,npsp
! (npsp lines, 1 for each pseudopotential ; npsp=ntypat, except if
! alchemical pseudo-atoms)
write(unit=unit) title,znuclpsp,zionpsp,pspso,pspdat,pspcod,pspxc
enddo
!(final record: residm, coordinates, total energy, Fermi energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal,fermie

The format for versions 2.3 to 3.3 was:

71



3.5. THE DIFFERENT OUTPUT FILES

write(unit=header) codvsn,headform,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nspden,nspinor,nsppol,nsym,ntypat,occopt,acell(1:3),&
& ecut_eff,rprimd(1:3,1:3)
write(unit=header) nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),symrel(1:3,1:3,1:nsym),typat(1:natom),istwfk(1:nkpt),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucl(1:ntypat)
do itypat=1,ntypat
! (ntypat lines, 1 for each psp...)
write(unit=unit) title,znucl,zion,pspso,pspdat,pspcod,pspxc,&

& lmax,lloc,mmax
enddo
!(final record: residm, coordinates, total energy, Fermi energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal,fermie

The format for versions 2.0, 2.1 and 2.2 was:

write(unit=header) codvsn,fform
write(unit=header) bantot,date,intxc,ixc,natom,ngfft(1:3),&
& nkpt,nsppol,nsym,ntypat,acell(1:3),ecut_eff,rprimd(1:3,1:3)
write(unit=header) nband(1:nkpt*nsppol),&
& npwarr(1:nkpt),symrel(1:3,1:3,1:nsym),typat(1:natom),istwfk(1:nkpt),&
& kpt(1:3,1:nkpt),occ(1:bantot),tnons(1:3,1:nsym),znucl(1:ntypat)
do itypat=1,ntypat
! (ntypat lines, 1 for each psp...)
write(unit=unit) title,znucl,zion,pspdat,pspcod,pspxc,lmax,lloc,mmax
enddo
!(final record: residm, coordinates, total energy)
write(unit=unit) residm,xred(1:3,1:natom),etotal

3.5.5 The density output file

This is an unformatted data file containing the electron density on the real space FFT grid. It
consists of the header records followed by

do ispden=1,nspden
write(unit) (rhor(ir),ir=1,cplex*ngfft(1)*ngfft(2)*ngfft(3))
enddo

where rhor is the electron density in electrons/bohr3, and cplex is the number of complex
components of the density (cplex=1 for GS calculations — the density is real —, and cplex=1
or 2 for RF). The input variable nspden describes the number of components of the density.
The first component (the only one present when nspden=1) is always the total charge density.
When nspden=2, the second component is the density associated with spin–up electrons. The
case nspden=4 is not yet implemented. Note that the meaning of the different components of
the density differs for the density array (rhor) and for the different potential arrays (vxc ...), see
section 6.6.

To identify the points in real space which correspond with the index “ir” above, consider the
following.

The first array value (ir=1) corresponds with the first grid point which is at the origin of the
unit cell, (x = 0, y = 0, z = 0).

The next grid point (ir=2) lies along the first primitive translation at the next fft grid point,
which is (1/ngfft(1))*acell(1)*rprim(mu,1). This is 1/ngfft(1) of the way along the first primitive
translation.

72



CHAPTER 3. ABINIS HELP

The rest of the values up to ir=ngfft(1) lie along this vector, at (ir-1)/ngfft(1) of the way along
the first primitive translation. The point at ir=ngfft(1)+1 lies at 1/ngfft(2) along the second
primitive translation.

The next points up to ir=ngfft(1)+ngfft(1) are displaced in the direction of the second primitive
translation by 1/ngfft(2) and in the first translation by (ir-ngfft(1)-1)/ngfft(1).

This pattern continues until ir=ngfft(1)*ngfft(2).
The next point after that is displaced along the third primitive translation by 1/ngfft(3), and

so forth until ir varies all the way from 1 to ngfft(1)*ngfft(2)*ngfft(3). This last point is in the
corner diagonally opposite from the origin, or right alongside the origin if the whole grid is viewed
as being periodically repeated.

3.5.6 The potential files

Also unformatted files consisting of the header records and

do ispden=1,nspden
write(unit) (potential(ir),ir=1,cplex*ngfft(1)*ngfft(2)*ngfft(3))
enddo

where potential can be either the sum of the Hartree potential, exchange–correlation and
local pseudopotential (see prtopt), the Hartree potential (see prtvha), the Hartree+XC potential
(see prtvhxc), or the XC potential (see prtvxc), These are defined on the real space grid in Hartree
energy units. The underlying grid is as described above. If nspden=2, the different components are
the spin–up potential and the spin–down potential. The case nspden=4 is not yet implemented.
Note that the Hartree potential is NOT spin–dependent, but in order to use the same format as
for the other potential files, the spin–independent array is written twice, once for spin–up and one
for spin–down.

3.5.7 The wavefunction output file

This is an unformatted data file containing the planewaves coefficients of all the wavefunctions,
and different supplementary data.

The ground–state wf file consists of the header records, and data written with the following
lines of FORTRAN (version 4.0 and more recent versions):

bantot=0 <-- counts over all bands
do isppol=1,nsppol
do ikpt=1,nkpt
write(unit) npw,nspinor,nband <-- for each $k$--point
write(unit) kg(1:3,1:npw) <-- plane wave reduced coordinates
write(unit) eigen(1+bantot:nband+bantot), <-- eigenvalues for this $k$--point

occ(1+bantot:nband+bantot) <-- occupation numbers for this k point
do iband=1,nband
write(unit) (cg(ii+...),ii=1,2*npw*nspinor) <-- wavefunction coefficients

enddo for a single band and k point
bantot=bantot+nband
enddo
enddo

If the job ended without problem, and if one is not using newsp, a few supplementary lines
are added, in order to give the history of atomic positions and corresponding forces. The integer
nxfh gives the number of pairs (x,f) of positions and forces in reduced coordinates:

write(unit)nxfh
do ixfh=1,nxfh
write(unit) xred(1:3,1:natom,ixfh),dummy(1:3,1:4),&

73



3.6. NUMERICAL QUALITY OF THE CALCULATIONS

& fred(1:3,1:natom,ixfh),dummy(1:3,1:4)
enddo

The dummy variables might contain, in the future, the description of the unit cell, and the
stresses. The type of the different variables is:

integer :: kg,nband,npw,nspinor,nxfh
double precision :: cg,dummy,eigen,fred,occ,xred

The response–function wf file consists of the header records, and data written with the
following lines of FORTRAN (version 4.0 and more recent versions):

bantot=0 <-- counts over all bands
do isppol=1,nsppol
do ikpt=1,nkpt
write(unit) npw,nspinor,nband <-- for each k point
write(unit) kg(1:3,1:npw) <-- plane wave reduced coordinates
do iband=1,nband
write(unit) (eigen(jband+(iband-1)*nband+bantot),jband=1,2*nband)

<-- column of eigenvalue matrix
write(unit) (cg(ii+...),ii=1,2*npw*nspinor) <-- wavefunction coefficients

enddo for a single band and k point
bantot=bantot+nband
enddo
enddo

In version previous to 4.0, npw and nspinor were combined:

write(unit) npw*nspinor,nband

while the planewave coordinate record was not present (in both GS and RF cases).
Note that there is an alternative format (_KSS) for the output of the wavefunction coefficients,

activated by a non–zero value of nbandkss.

3.5.8 Other output files

There are many other output files, optionally written, all formatted files at present. Their use is
usually governed by a specific input variable. Please consult the description of this input variable,
in order to have more information on such files:

• prtcml to print a CML file with geometry information;

• prtdos to print a file with the electronic Density–Of–States;

• prtgeo to print a file with a geometrical analysis (bond lengths and bond angles), that also
contains an XMOL section;

• prt1dm to print a one-dimensional projection of potential and density, for the three axes.

If you follow the tutorial, you should go back to the tutorial window now.

3.6 Numerical quality of the calculations

The following section describes various parameters which affect convergence and the numerical
quality of calculations.

The list of these input parameters is

1. ecut ;

74



CHAPTER 3. ABINIS HELP

2. toldfe, toldff, tolwfr, and tolvrs, as well as nstep;

3. nkpt ;

4. ngfft ;

5. tolmxf, as well as amu, dtion, vis, ntime;

6. acell and rprim.

The technical design of the pseudopotential also affects the quality of the results.

1. The first issue regarding convergence is the number of planewaves in the basis for a given
set of atoms. Some atoms (notably those in the first row or first transition series row)
have relatively deep pseudopotentials which require many planewaves for convergence. In
contrast are atoms like Si for which fewer planewaves are needed. A typical value of “ecut”
for silicon might be 5–10 Hartree for quite good convergence, while the value for oxygen
might be 25–35 hartree or more depending on the convergence desired and the design of the
pseudo–potential.

NOTE: It is necessary in every new problem to TEST the convergence by RAISING
ecut for a given calculation until the results being computed are constant to within some
tolerance. This is up to the user and is very important. For a given acell and rprim, ecut
is the parameter which controls the number of planewaves. Of course if rprim or acell is
varied then the number of planewaves will also change.

Let us reiterate that extremely careful pseudopotential design can optimize the convergence
of e.g. the total energy within some range of planewave number or ecut. It is appropriate
to attempt to optimize this convergence, especially for difficult atoms like oxygen or copper,
as long as one does not significantly compromise the quality or transferability of the pseu-
dopotential. There are many people working on new techniques for optimizing convergence.

For information on extended norm conservation, see E. L. Shirley, D. C. Allan, R. M. Martin,
and J. D. Joannopoulos, Phys. Rev. B 40, 3652 (1989).

For information on optimizing the convergence of pseudopotentials, see A. M. Rappe, K. M.
Rabe, E. Kaxiras, and J. D. Joannopoulos, Phys. Rev. B 41, 1227 (1990).

2. In addition to achieving convergence in the number of planewaves in the basis, one must
ensure that the SCF iterations which solve the electronic structure for a given set of atomic
coordinates are also converged. This convergence is controlled by the parameters toldfe,
toldff, tolwfr, and tolvrs, as well as the parameter nstep. One of the “tolerance” parameters
must be chosen, and, when the required level of tolerance is fulfilled, the SCF cycles will stop.
The nstep variable also controls convergence in preconditioned conjugate gradient iterations
by forcing the calculation to stop whenever the number of such iterations exceeds nstep.
Usually one wants nstep to be set larger than needed to reach a given tolerance, or else one
wants to restart insufficiently converged calculations until the required tolerance is reached.

Note that, if the gap in the system closes (e.g. due to defect formation or if the system is
metallic in the first place), the presently coded algorithm will be slower to converge than
for insulating materials. Convergence trouble during iterations usually signals closure of the
gap. The code will suggest to treat at least one unoccupied state (or band) in order to be
able to monitor such a closure.

3. For self consistent calculations (iscf positive) it is important to test the adequacy of the
k–point integration. If symmetry is used then one usually tests a set of “special point”
grids. Otherwise one tests the addition of more and more k–points, presumably on uniform
grids, to ensure that a sufficient number has been included for good k–point integration.
The parameter nkpt indicates how many k–points are being used, and their coordinates are
given by kpt and kptnrm, described above. The weight given to each k–point is provided

75



3.7. FINAL REMARKS

by input variable wtk. Systematic tests of k–point integration are much more difficult than
tests of the adequacy of the number of planewaves. The difficulty I refer to is simply the
lack of a very systematic method for generating k–point grids for tests.

4. It is possible to run calculations for which the fft box is not quite large enough to avoid
aliasing error in fft convolutions. An aliasing error, or a fourier filter approximation, is
occurring when the output variable “boxcut” is less than 2. boxcut is the smallest ratio of
the fft box side to the planewave basis sphere diameter. If this ratio is 2 or larger then e.g. the
calculation of the Hartree potential from the charge density is done without approximation.

NOTE: the values of ngfft(1:3) are chosen automatically by the code to give boxcut ¿ 2,
if ngfft has not been set by hand. At ratios smaller than 2, certain of the highest fourier
components are corrupted in the convolution. If the basis is nearly complete, this fourier
filter can be an excellent approximation. In this case values of boxcut can be as small
as about 1.5 without incurring significant error. For a given ecut, acell, and rprim, one
should run tests for which ngfft is large enough to give boxcut ¿= 2, and then one may try
smaller values of ngfft if the results are not significantly altered. See the descriptions of these
variables above.

5. If you are running calculations to relax or equilibrate structures, i.e. with ionmov=1 and
possibly vis¿0, then the quality of your molecular dynamics or relaxation will be affected by
the parameters amu, dtion, vis, ntime, tolmxf. Clearly if you want a relaxed structure you
must either run long enough or make repeated runs until the largest force in the problem
(output as fmax) is smaller than what you will tolerate (see tolmxf ). If dtion is too large
for the given values of masses (amu) and viscosity (vis) then the molecular dynamics will be
unstable. If dtion is too small, then the molecular dynamics will move inefficiently slowly. A
consensus exists in the community that forces larger than about 0.1 eV/Angstrom are really
too large to consider the relaxation to be converged. It is best for the user to get experience
with this in his/her own application. The option ionmov=2, 3 or 7 are also available This
uses the Broyden (BFGS) scheme for structural optimization and is much more efficient than
viscous damping for structural relaxation.

6. If you are running supercell calculations (i.e. an isolated atom or molecule in a big box, or
a defect in a solid, or a slab calculation) you must check the convergence of your calculation
with respect to the supercell and system size.

• For an isolated molecule in a big box: increase concurrently the three dimensions of
your supercell (acell), and check the convergence of your physical property.

• For a defect in a solid: your supercell must bu a multiple of the primitive cell of the
bulk solid, so you have less freedom. Still, be sure that your supercell is large enough
for your properties of interest to be accurate at the level you want it to be.

• For a slab calculation: you must increase the vacuum in the cell, but also the thickness
of your slab systematically...

If you follow the tutorial, you should go back to the tutorial window now.

3.7 Final remarks

The ABINIT package is developped by the ABINIT group. The status of this package and the
ABINIT group are explained in the file ~ABINIT/Infos/context and ~ABINIT/Infos/planning,
or some recent version of them.

Please send questions and constructive criticisms of the code or this documentation, as well as
bug reports (see ~ABINIT/Infos/bug_report) to

76



CHAPTER 3. ABINIS HELP

Xavier Gonze

Unité PCPM, Université Catholique de Louvain
1, place Croix du Sud
B–1348 Louvain-la-Neuve
Belgium
tel: (+32) 10 472076
fax: (+32) 10 473452
email: gonze@pcpm.ucl.ac.be

or to

Douglas C. Allan

SP–FR–05
Corning Incorporated
Corning, NY 14831
USA
tel: (+1) 607 974 3498
fax: (+1) 607 974 3675
email: allandc@corning.com

Correspondence by email is usually most convenient.

77

gonze@pcpm.ucl.ac.be
allandc@corning.com


3.7. FINAL REMARKS

78



Chapter 4

Main ABINIT code, input
variables: Complete list

This document lists the names (keywords) of all input variables to be used in the main input file
of the abinis code.

The new user is advised to read first “the new user’s guide”, before reading the present file. It
will be easier to discover the present file with the help of the tutorial.

When the user is sufficiently familiarized with ABINIT, the reading of the ~ABINIT/Infos/
tuning file might be useful. For response–function calculations using abinis, the complementary
file ~ABINIT/Infos/respfn_help is needed.

Copyright (C) 1998–2004 ABINIT group (DCA, XG, RC).
This file is distributed under the terms of the GNU General Public License, see ~ABINIT/

Infos/copyright or http://www.gnu.org/copyleft/gpl.txt. For the initials of contributors,
see ~ABINIT/Infos/contributors.

4.1 Basic variables, VARBAS

4.1.1 acell

Mnemonics: scAle CELL
Characteristic: EVOLVING, LENGTH
Variable type: real array acell(3)

Gives the length scales by which dimensionless primitive translations (in rprim) are to be
multiplied. By default, given in Bohr atomic units (1 Bohr=0.5291772083 Å), although Angstrom
can be specified, if preferred, since acell has the ‘LENGTH’ characteristics. See further description
of acell related to the rprim input variable.

4.1.2 angdeg

Mnemonics: ANGles in DEGrees
Characteristic:
Variable type: real array angdeg(3)
No Default (use rprim as Default).

Gives the angles between directions of primitive vectors of the unit cell (in degrees), as an
alternative to the input array rprim. Will be used to set up rprim, that, together with the array
acell, will be used to define the primitive vectors.

• angdeg(1) is the angle between the 2nd and 3rd vectors,

79

http://www.gnu.org/copyleft/gpl.txt


4.1. BASIC VARIABLES, VARBAS

• angdeg(2) is the angle between the 1st and 3rd vectors,

• angdeg(3) is the angle between the 1st and 2nd vectors,

If the three angles are equal within 1.0× 10−12 (except if they are exactly 90 degrees), the three
primitive vectors are chosen so that the trigonal symmetry that exchange them is along the z
cartesian axis:

R1 = (a, 0, c)R2 = (−a/2,
√

3/2 ∗ a, c)R3 = (−a/2,−
√

3/2 ∗ a, c) (4.1)

where a2 + c2 = 1.0.
If the angles are not all equal (or if they are all 90 degrees), one will have the following generic

form:

• R1=(1,0,0)

• R2=(a,b,0)

• R3=(c,d,e)

where each of the vectors is normalized, and form the desired angles with the others.

4.1.3 ecut

Mnemonics: Energy CUToff
Characteristic: ENERGY
Variable type: real parameter

Used for kinetic energy cutoff which controls number of planewaves at given k–point by:
(1/2)[(2π) ∗ (k +Gmax)]2 = ecut for Gmax. All planewaves inside this “basis sphere” centered at
k are included in the basis (except if dilatmx is defined). Can be specified in Ha (the default),
Ry, eV or Kelvin, since ecut has the ‘ENERGY’ characteristics. (1 Ha=27.2113961 eV) This is
the single parameter which can have an enormous effect on the quality of a calculation; basically
the larger ecut is, the better converged the calculation is. For fixed geometry, the total energy
MUST always decrease as ecut is raised because of the variational nature of the problem.

Usually one runs at least several calculations at various ecut to investigate the convergence
needed for reliable results.

For k–points whose coordinates are build from 0 or 1/2, the implementation of time–reversal
symmetry that links coefficients of the wavefunctions in reciprocal space has been realized. See
the input variable istwfk. If activated (which corresponds to the Default mode), this input variable
istwfk will allow to divide the number of plane wave (npw) treated explicitly by a factor of two.
Still, the final result should be identical with the ‘full’ set of plane waves.

See the input variable ecutsm, for the smoothing of the kinetic energy, needed to optimize unit
cell parameters.

4.1.4 iscf

Mnemonics: Integer for Self–Consistent–Field cycles
Characteristic:
Variable type: integer parameter
Default is 5.

Control the self–consistency.
Positive, non–zero values ⇒ this is the usual choice for doing the usual ground state (GS)

calculations or for structural relaxation, where the potential has to be determined self–consistently.
The choice between different algorithms for SCF is possible:

80



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• =1 ⇒ get the largest eigenvalue of the SCF cycle (DEVELOP option, used with irdwfk=1
or irdwfq=1);

• =2 ⇒ SCF cycle, simple mixing;

• =3 ⇒ SCF cycle, anderson mixing;

• =5 ⇒ SCF cycle, CG based on the minim. of the energy;

• Other positive, including zero values, are not allowed.

The preferred option is 5, which is quite robust. The value 3 can be faster, but sometimes the
SCF iterations will not converge with iscf =3! Other (negative) options:

• = −2 ⇒ a non-self-consistent calculation is to be done; in this case an electron density
rho(r) on a real space grid (produced in a previous calculation) will be read from a disk file
(automatically if ndtset=0, or according to the value of getden if ndtset 6= 0). The name of
the density file must be given as indicated in the section 4 of abinis_help. iscf = −2 would
be used for band structure calculations, to permit computation of the eigenvalues of occupied
and unoccupied states at arbitrary k–points in the fixed self consistent potential produced
by some integration grid of k–points. To compute the eigenvalues (and wavefunctions)
of unoccupied states in a separate (non-selfconsistent) run, the user should save the self-
consistent rho(r) and then run iscf = −2 for the intended set of k–points and bands. To
prepare a run with iscf = −2, a density file can be produced using the parameter prtden
(see its description). When a self-consistent set of wavefunctions is already available, abinit
can be used with nstep=0 (see Test_v2/t47.in), and the adequate value of prtden.

• = −3 ⇒ like −2, but initialize occ and wtk, directly or indirectly (using ngkpt or kptrlatt)
depending on the value of occopt. For GS, this option might be used to generate Density-of-
states (thanks to prtdos), or to produce STM charge density map (thanks to prtstm). For
RF, this option is needed to compute the response to ddk perturbation.

• = −1 ⇒ like −2, but the non-self-consistent calculation is followed by the determination
of excited states within TDDFT. This is only possible for nkpt=1, kpt=0 0 0, nsppol=1.
Note that the oscillator strength needs to be defined with respect to an origin of coordinate,
thanks to the input variable boxcenter. The maximal number of Kohn-Sham excitations to
be used to build the excited state TDDFT matrix can be defined by td mexcit, or indirectly
by the maximum Kohn-Sham excitation energy td maxene.

4.1.5 ixc

Mnemonics: Integer for eXchange-Correlation choice
Characteristic:
Variable type: integer parameter
Default is ixc=1 (Teter parameterization). However, if all the pseudopotentials have the same
value of pspxc, the initial value of ixc will be that common value.

Control the choice of exchange and correlation (xc).

• 0 ⇒ NO xc;

• 1⇒ LDA or LSD, Teter Pade parametrization (4/93, published in S. Goedecker, M. Teter, J.
Huetter, Phys. Rev. B 54, 1703 (1996)), which reproduces Perdew-Wang (which reproduces
Ceperley-Alder!).

• 2 ⇒ LDA, Perdew-Zunger-Ceperley-Alder (no spin-polarization)

• 3 ⇒ LDA, old Teter rational polynomial parametrization (4/91) fit to Ceperley-Alder data
(no spin-polarization)

81



4.1. BASIC VARIABLES, VARBAS

• 4 ⇒ LDA, Wigner functional (no spin-polarization)

• 5 ⇒ LDA, Hedin-Lundqvist functional (no spin-polarization)

• 6 ⇒ LDA, “X-alpha” functional (no spin-polarization)

• 7 ⇒ LDA or LSD, Perdew-Wang 92 functional

• 8 ⇒ LDA or LSD, x-only part of the Perdew-Wang 92 functional

• 9 ⇒ LDA or LSD, x- and RPA correlation part of the Perdew-Wang 92 functional

• 11 ⇒ GGA, Perdew-Burke-Ernzerhof GGA functional

• 12 ⇒ GGA, x-only part of Perdew-Burke-Ernzerhof GGA functional

• 13⇒ GGA potential of van Leeuwen-Baerends, while for energy, Perdew-Wang 92 functional

• 14 ⇒ GGA, revPBE of Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998)

• 15 ⇒ GGA, RPBE of B. Hammer, L.B. Hansen and J.K. Norskov, Phys. Rev. B 59, 7413
(1999)

• 16 ⇒ GGA, HTCH of F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy, J. Chem.
Phys. 109, 6264 (1998)

• 20 ⇒ Fermi-Amaldi xc ( −1/N Hartree energy, where N is the number of electrons per cell;
G = 0 is not taken into account however), for TDDFT tests. No spin-pol. Does not work
for RF.

• 21 ⇒ same as 20, except that the xc-kernel is the LDA (ixc=1) one, for TDDFT tests.

• 22⇒ same as 20, except that the xc-kernel is the Burke-Petersilka-Gross hybrid, for TDDFT
tests.

Note that the choice made here should agree with the choice made in generating the original
pseudopotential, except for ixc=0 (usually only used for debugging). A warning is issued if this
is not the case. However, the choices ixc=1, 2, 3 and 7 are fits to the same data, from Ceperley-
Alder, and are rather similar, at least for spin-unpolarized systems. The choice between the LDA
or the LSD is governed by the value of nsppol (see below).

NOTE: in the implementation of the spin-dependence of these functionals, and in order to
avoid divergences in their derivatives, the interpolating function between spin-unpolarized and
fully-spin-polarized function has been slightly modified, by including a zeta rescaled by 1.d0-1.d-6.
This should affect total energy at the level of 1.d-6Ha, and should have an even smaller effect on
differences of energies, or derivatives. The value ixc=10 is used internally: gives the difference
between ixc=7 and ixc=9, for use with an accurate RPA correlation energy.

4.1.6 jdtset

Mnemonics: index -J- for DaTaSETs
Characteristic: NO MULTI
Variable type: integer array jdtset(ndtset)
Default: the series 1, 2, 3 . . . ndtset.

Gives the dataset index of each of the datasets. This index will be used:

• to determine which input variables are specific to each dataset, since the variable names
for this dataset will be made from the bare variable name concatenated with this index,
and only if such a composite variable name does not exist, the code will consider the bare
variable name, or even, the Default;

82



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• to characterize output variable names, if their content differs from dataset to dataset;

• to characterize output files (root names appended with DSx where ‘x’ is the dataset index
).

The allowed index values are between 1 and 99.
An input variable name appended with 0 is not allowed.
When ndtset==0, this array is not used, and moreover, no input variable name appended with

a digit is allowed. This array might be initialized thanks to the use of the input variable udtset.
In this case, jdtset cannot be used.

4.1.7 kpt

Mnemonics: K - PoinTs
Characteristic:
Variable type: real array kpt(3,nkpt)
Default is 0. 0. 0. (for just one k–point)

Contains the k–points in terms of reciprocal space primitive translations (NOT in cartesian
coordinates!). Needed ONLY if kptopt=0, otherwise deduced from other input variables.

It contains dimensionless numbers in terms of which the cartesian coordinates would be:
k cartesian = k1*G1+k2*G2+k3*G3 where (k1, k2, k3) represent the dimensionless “reduced
coordinates” and G1, G2, G3 are the cartesian coordinates of the primitive translation vectors.
G1, G2, G3 are related to the choice of direct space primitive translation vectors made in rprim.
Note that an overall norm for the k–points is supplied by kptnrm. This allows one to avoid
supplying many digits for the k–points to represent such points as (1,1,1)/3.

Note: one of the algorithms used to set up the sphere of G vectors for the basis needs compo-
nents of k–points in the range [−1, 1], so the remapping is easily done by adding or subtracting
1 from each component until it is in the range [−1, 1]. That is, given the k–point normalization
kptnrm described below, each component must lie in [–kptnrm, kptnrm]. Not read if kptopt 6= 0.

4.1.8 kptnrm

Mnemonics: K - PoinTs NoRMalization
Characteristic:
Variable type: real parameter
Default is 1.

Establishes a normalizing denominator for each k–point. Needed only if kptopt ≤ 0, otherwise
deduced from other input variables. The k–point coordinates as fractions of reciprocal lattice
translations are therefore kpt(mu,ikpt)/kptnrm. kptnrm defaults to 1 and can be ignored by the
user. It is introduced to avoid the need for many digits in representing numbers such as 1/3.

It cannot be smaller than 1.0.

4.1.9 kptopt

Mnemonics: KPoinTs OPTion
Characteristic:
Variable type: integer parameter
Default is 0.

Control the set up of the k–points list. The aim will be to initialize, by straight reading or by
a preprocessing approach based on other input variables, the following input variables, giving the
k–points, their number, and their weight: kpt, kptnrm, nkpt, and, for iscf 6= −2, wtk.

83



4.1. BASIC VARIABLES, VARBAS

Often, the k–points will form a lattice in reciprocal space. In this case, one will also aim at
initializing input variables that give the reciprocal of this k–point lattice, as well as its shift with
respect to the origin: ngkpt or kptrlatt, as well as on nshiftk and shiftk.

• 0 ⇒ read directly nkpt, kpt, kptnrm and wtk (corresponds to the usage before version 2.1)

One can use the kptgen utility to produce these input data.

• 1 ⇒ rely on ngkpt or kptrlatt, as well as on nshiftk and shiftk to set up the k–points. Take
fully into account the symmetry to generate the k–points in the Irreducible Brillouin Zone
only.

(This is the usual mode for GS calculations)

• 2⇒ rely on ngkpt or kptrlatt, as well as on nshiftk and shiftk to set up the k–points. Take into
account only the time-reversal symmetry: k–points will be generated in half the Brillouin
zone.

(This is to be used when preparing or executing a RF calculation at q=(0 0 0))

• 3⇒ rely on ngkpt or kptrlatt, as well as on nshiftk and shiftk to set up the k–points. Do not
take into account any symmetry: k–points will be generated in the full Brillouin zone.

(This is to be used when preparing or executing a RF calculation at non-zero q)

• (4 ⇒ has been replaced by negative values in version 2.3)

• A negative value ⇒ rely on kptbounds, and ndivk to set up a band structure calculation
along different lines (allowed only for iscf ==−2). The absolute value of kptopt gives the
number of segments of the band structure.

In the case of a grid of k–points, the auxiliary variables kptrlen, ngkpt and prtkpt might help
you to select the optimal grid.

4.1.10 natom

Mnemonics: Number of ATOMs
Characteristic:
Variable type: integer parameter
Default is 1

Gives the total number of atoms in the unit cell. Default is 1 but you will obviously want to
input this value explicitly. Note that natom refers to all atoms in the unit cell, not only to the
irreducible set of atoms in the unit cell (using symmetry operations, this set allows to recover all
atoms). If you want to specify only the irreducible set of atoms, use the symmetriser, see the
input variable natrd.

4.1.11 nband

Mnemonics: Number of BANDs
Characteristic:
Variable type: integer parameter
Default is 1.

Gives number of bands, occupied plus possibly unoccupied, for which wavefunctions are being
computed along with eigenvalues. Note: if the parameter occopt (see below) is not set to 2, nband
is a scalar integer, but if the parameter occopt is set to 2, then nband must be an array nband(nkpt
* nsppol) giving the number of bands explicitly for each k–point. This option is provided in order
to allow the number of bands treated to vary from k–point to k–point. For the values of occopt

84



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

not equal to 0 or 2, nband can be omitted. The number of bands will be set up thanks to the use
of the variable fband. The present Default will not be used.

If nspinor is 2, nband must be even for each k–point.
In the case of a GW calculation (optdriver=3 or 4), nband gives the number of bands to be

treated to generate the screening (susceptibility and dielectric matrix), as well as the self-energy.
However, to generate the KSS file (see kssform) the relevant number of bands is given by nbandkss.

4.1.12 ndtset

Mnemonics: Number of DaTaSETs
Characteristic: NO MULTI
Variable type: integer parameter
Default is 0 (no multi-data set).

Gives the number of data sets to be treated.
If 0, means that the multi-data set treatment is not used, so that the root filenames will not

be appended with DSx, where ‘x’ is the dataset index defined by the input variable jdtset, and
also that input names with a dataset index are not allowed. Otherwise, ndtset=0 is equivalent to
ndtset=1.

4.1.13 ngkpt

Mnemonics: Number of Grid points for K Points generation
Characteristic: NOT INTERNAL
Variable type: integer array ngkpt(3)
No Default

Used when kptopt ≥ 0, if kptrlatt has not been defined (kptrlatt and ngkpt are exclusive of
each other). Its three positive components give the number of k–points of Monkhorst-Pack grids
(defined with respect to primitive axis in reciprocal space) in each of the three dimensions. ngkpt
will be used to generate the corresponding kptrlatt input variable. The use of nshiftk and shiftk,
allows to generate shifted grids, or Monkhorst-Pack grids defined with respect to conventional unit
cells.

When nshiftk=1, kptrlatt is initialized as a diagonal (3x3) matrix, whose diagonal elements are
the three values ngkpt(1:3). When nshiftk is greater than 1, ABINIT will try to generate kptrlatt
on the basis of the primitive vectors of the k–lattice: the number of shifts might be reduced, in
which case kptrlatt will not be diagonal anymore.

Monkhorst-Pack grids are usually the most efficient when their defining integer numbers are
even. For a measure of the efficiency, see the input variable kptrlen.

4.1.14 nkpt

Mnemonics: Number of K - Points
Characteristic:
Variable type: integer parameter
Default is 0 if kptopt 6=0, and 1 if kptopt==0.

If non-zero, nkpt gives the number of k–points in the k–point array kpt. These points are used
either to sample the Brillouin zone, or to build a band structure along specified lines.

If nkpt is zero, the code deduces from other input variables (see the list in the description of
kptopt) the number of k–points, which is possible only when kptopt 6=0. If kptopt 6=0 and the input
value of nkpt 6=0, then ABINIT will check that the number of k–points generated from the other
input variables is exactly the same than nkpt.

85



4.1. BASIC VARIABLES, VARBAS

If kptopt is positive, nkpt must be coherent with the values of kptrlatt, nshiftk and shiftk.
For ground state calculations, one should select the k–point in the irreducible Brillouin Zone
(obtained by taking into account point symmetries and the time-reversal symmetry). For response
function calculations, one should select k–points in the full Brillouin zone, if the wavevector of the
perturbation does not vanish, or in a half of the Brillouin Zone if q = 0. The code will automatically
decrease the number of k–points to the minimal set needed for each particular perturbation.

If kptopt is negative, nkpt will be the sum of the number of points on the different lines of the
band structure. For example, if kptopt=−3, one will have three segments; supposing ndivk is 10
12 17, the total number of k–points of the circuit will be 10+12+17+1(for the final point)=40.

4.1.15 nshiftk

Mnemonics: Number of SHIFTs for k–point grids
Characteristic:
Variable type: integer parameter
The Default is 1.

This parameter gives the number of shifted grids to be used concurrently to generate the full
grid of k–points. It can be used with primitive grids defined either from ngkpt or kptrlatt. The
maximum allowed value of nshiftk is 8. The values of the shifts are given by shiftk.

4.1.16 nsppol

Mnemonics: Number of SPin POLarization
Characteristic:
Variable type: integer parameter
The Default is 1.

Give the number of independent spin polarisations. Can take the values 1 or 2.
If nsppol=1, one has an unpolarized calculation (nspinor=1, nspden=1) or an antiferromag-

netic system (nspinor=1, nspden=2), or a calculation in which spin up and spin down cannot be
disantengled (nspinor=2), non-collinear magnetism or presence of spin-orbit coupling, for which
one needs spinor wavefunctions.

If nsppol=2, one has a spin-polarized calculation with separate and different wavefunctions
for up and down spin electrons for each band and k–point. Compatible only with nspinor=1,
nspden=2.

In the present status of development, with nsppol=1, all values of ixc are allowed, while with
nsppol=2, only ixc=0, 1, 7 and 11 are allowed.

See also the input variable nspden for the components of the density matrix with respect to
the spin-polarization.

4.1.17 nstep

Mnemonics: Number of self-consistent field STEPS
Characteristic:
Variable type: integer parameter
Default is 1.

Gives the maximum number of SCF cycles (or “iterations”). Full convergence from random
numbers if usually achieved in 12-20 SCF iterations. Each can take from minutes to hours. In
certain difficult cases, usually related to a small or zero bandgap, convergence performance may be
much worse. When the convergence tolerance tolwfr on the wavefunctions is satisfied, iterations
will stop, so for well converged calculations you should set nstep to a value larger than you think
will be needed for full convergence, e.g. if 20 steps usually converges the system, set nstep to 30.

86



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

NOTE that a choice of nstep=0 is permitted; this will either read wavefunctions from disk (with
irdwfk=1 or irdwfq=1, or non-zero getwfk or getwfq in the case of multi-dataset) and compute the
density, the total energy and stop, or else (with all of the above vanishing) will initialize randomly
the wavefunctions and compute the resulting density and total energy. This is provided for testing
purposes. One can output the density by using prtden. Unlike the forces, the stress tensor also
gets computed with nstep=0.

4.1.18 nsym

Mnemonics: Number of SYMmetry operations
Characteristic: SYMMETRY FINDER
Variable type: integer parameter
Default is 0.

Gives number of space group symmetries to be applied in this problem. Symmetries will be
input in array “symrel” and (nonsymmorphic) translations vectors will be input in array “tnons”.
If there is no symmetry in the problem then set nsym to 1, because the identity is still a symmetry.
In case of a RF calculation, the code is able to use the symmetries of the system to decrease the
number of perturbations to be calculated, and to decrease of the number of special k–points to
be used for the sampling of the Brillouin zone. After the response to the perturbations have been
calculated, the symmetries are used to generate as many as possible elements of the 2DTE from
those already computed.

SYMMETRY FINDER mode (Default mode). If nsym is 0, all the atomic coordinates must
be explicitely given (one cannot use the geometry builder and the symmetrizer): the code will
then find automatically the symmetry operations that leave the lattice and each atomic sublattice
invariant. It also checks whether the cell is primitive (see chkprim). Note that the tolerance
on symmetric atomic positions and lattice is rather stringent: for a symmetry operation to be
admitted, the lattice and atomic positions must map on themselves within 1.0e-8.

The user is allowed to set up systems with non-primitive unit cells (i.e. conventional FCC or
BCC cells, or supercells without any distortion). In this case, pure translations will be identified as
symmetries of the system by the symmetry finder. Then, the combined “pure translation + usual
rotation and inversion” symmetry operations can be very numerous. For example, a conventional
FCC cell has 192 symmetry operations, instead of the 48 ones of the primitive cell. A maximum
limit of 384 symmetry operations is hard-coded. This corresponds to the maximum number of
symmetry operations of a 2x2x2 undistorted supercell. Going beyond that number will make the
code stop very rapidly. If you want nevertheless, for testing purposes, to treat a larger number of
symmetries, change the initialization of “msym” in the abinit.f main routine, then recompile the
code.

4.1.19 ntypat

Mnemonics: Number of TYPEs of atoms
Characteristic: NO MULTI
Variable type: integer parameter
Default is 1.

Gives the number of types of atoms. E.g. for a homopolar system (e.g. pure Si) ntypat is 1,
while for BaTiO3, ntypat is 3. Except when alchemical mixing of pseudopotentials is used, the
number of types of atoms will be equal to the number of pseudopotentials npsp to be provided by
the user. Thus, The code will try to read the same number of pseudopotential files, whose names
should have been given in the “files” file.

The first pseudopotential will be assigned the type number 1, and so on . . .

87



4.1. BASIC VARIABLES, VARBAS

4.1.20 occopt

Mnemonics: OCCupation OPTion
Characteristic:
Variable type: integer option parameter
The Default is occopt=1.

Control how input parameters nband, occ, and wtk are handled.

• occopt=0:
All k–points have the same number of bands and the same occupancies of bands. nband
is given as a single number, and occ(nband) is an array of nband elements, read in by the
code. The k–point weights in array wtk(nkpt) are automatically normalized by the code to
add to 1.

• occopt=1:
Same as occopt=0, except that the array occ is automatically generated by the code, to
give a semiconductor. An error occurs when filling cannot be done with occupation numbers
equal to 2 or 0 in each k–point (non-spin-polarized case), or with occupation numbers equal
to 1 or 0 in each k–point (spin-polarized case).

• occopt=2:
k–points may optionally have different numbers of bands and different occupancies. nband(
nkpt*nsppol) is given explicitly as an array of nkpt*nsppol elements. occ() is given explicitly
for all bands at each k–point, and eventually for each spin – the total number of elements
is the sum of nband(ikpt) over all k–points and spins. The k–point weights wtk (nkpt)
are NOT automatically normalized under this option. occopt=3, 4, 5, 6 and 7 Metallic
occupation of levels, using different occupation schemes (see below). The corresponding
thermal broadening, or cold smearing, is defined by the input variable tsmear (see below:
the variable xx is the energy in Ha, divided by tsmear) Like for occopt=1, the variable occ
is not read All k–points have the same number of bands, nband is given as a single number,
read by the code. The k–point weights in array wtk(nkpt) are automatically normalized by
the code to add to 1.

– occopt=3:
Fermi-Dirac smearing (finite-temperature metal) Smeared delta function: 0.25d0/(cosh(xx/2.0d0)**2)

– occopt=4:
“Cold smearing” of N. Marzari (see his thesis work), with a=-.5634 (minimization of
the bump) Smeared delta function: exp(-xx2)/sqrt(pi) * (1.5d0+xx*(-a*1.5d0+xx*(-
1.0d0+a*xx)))

– occopt=5:
“Cold smearing” of N. Marzari (see his thesis work), with a=-.8165 (monotonic function
in the tail) Same smeared delta function as occopt=4, with different a.

– occopt=6:
Smearing of Methfessel and Paxton (PRB40,3616(1989)) with Hermite polynomial of
degree 2, corresponding to “Cold smearing” of N. Marzari with a=0 (so, same smeared
delta function as occopt=4, with different a).

– occopt=7:
Gaussian smearing, corresponding to the 0 order Hermite polynomial of Methfessel and
Paxton. Smeared delta function: 1.0d0*exp(-xx**2)/sqrt(pi)

WARNING: one can use metallic occupation of levels in the case of a molecule, in order to
avoid any problem with degenerate levels. However, it is adviced NOT to use occopt=6 (and to a
lesser extent occopt=4 and 5), since the associated number of electron versus the Fermi energy is
NOT garanteed to be a monotonic function. For true metals, AND a sufficiently dense sampling

88



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

of the Brillouin zone, this should not happen, but be cautious! As an indication of this problem,
a small variation of input parameters might lead to a jump of total energy, because there might
be two or even three possible values of the Fermi energy, and the bissection algorithm find one or
the other.

4.1.21 rprim

Mnemonics: Real space PRIMitive translations
Characteristic: EVOLVING (if ionmov==2 and optcell 6= 0)
Variable type: real array rprim(3,3)
Default: 3x3 unity matrix.

Give, in columnwise entry, the three dimensionless primitive translations in real space. If the
Default is used, that is, rprim is the the unity matrix, the three dimensionless primitive vectors
are three unit vectors in cartesian coordinates. Each will be multiplied by the corresponding acell
value to give the dimensional primitive vectors, called rprimd. In the general case, the dimensional
cartesian coordinates of the crystal primitive translations R1p, R2p and R3p, see rprimd, are

R1p(i)=rprim(i,1)*acell(1) for i=1,2,3 (x,y,and z)
R2p(i)=rprim(i,2)*acell(2) for i=1,2,3
R3p(i)=rprim(i,3)*acell(3) for i=1,2,3.

The rprim variable is thus used to define directions of the primitive vectors, that will be
multiplied by the appropriate length scale acell(1), acell(2), or acell(3) respectively to give the
dimensional primitive translations in real space in cartesian coordinates. Presently, it is requested
that the mixed product (R1xR2).R3 is positive. If this is not the case, simply exchange a pair of
vectors. To be more specific, rprim 1 2 3 4 5 6 7 8 9 corresponds to input of the three primitive
translations R1=(1,2,3), R2=(4,5,6), and R3=(7,8,9). Note carefully that the first three numbers
input are the first column of rprim, the next three are the second, and the final three are the
third. This corresponds with the usual Fortran order for arrays. The matrix whose columns are
the reciprocal space primitive translations is the inverse transpose of the matrix whose columns
are the direct space primitive translations.

Alternatively to rprim, directions of dimensionless primitive vectors can be specified by using
the input variable angdeg. This is especially useful for hexagonal lattices (with 120 or 60 degrees
angles). Indeed, in order for symmetries to be recognized, rprim must be symmetric up to 10
digits, inducing a specification such as

rprim 0.86602540378 0.5 0.0
-0.86602540378 0.5 0.0
0.0 0.0 1.0

that can be avoided thanks to angdeg:

angdeg 90 90 120

4.1.22 rprimd

Mnemonics: Real space PRIMitive translations, Dimensional
Characteristic: INTERNAL, EVOLVING (if ionmov==2 and optcell 6= 0)
Variable type: real array rprimd(3,3)

This internal variable gives the dimensional real space primitive vectors, computed from acell
and rprim.

R1p(i)=rprimd(i,1)=rprim(i,1)*acell(1) for i=1,2,3 (x,y,and z)
R2p(i)=rprimd(i,2)=rprim(i,2)*acell(2) for i=1,2,3
R3p(i)=rprimd(i,3)=rprim(i,3)*acell(3) for i=1,2,3

89



4.1. BASIC VARIABLES, VARBAS

4.1.23 shiftk

Mnemonics: SHIFT for K points
Characteristic:
Variable type: real array shift(3,nshiftk)
Default 0.5 0.5 0.5 . . . 0.5

It is used only when kptopt≥ 0, and must be defined if nshiftk is larger than 1. shiftk(1:3,1:nshiftk)
defines nshiftk shifts of the homogeneous grid of k–points based on ngkpt or kptrlatt. The shifts
induced by shiftk corresponds to the reduced coordinates in the coordinate system defining the k–
point lattice. For example, if the k–point lattice is defined using ngkpt, the point whose reciprocal
space reduced coordinates are ( shiftk(1,ii)/ngkpt(1) shiftk(2,ii)/ngkpt(2) shiftk(3,ii)/ngkpt(3) )
belongs to the shifted grid number ii.

The user might rely on ABINIT to suggest suitable and efficients combinations of kptrlatt and
shiftk. The procedure to be followed is described with the input variables kptrlen. In what follows,
we suggest some interesting values of the shifts, to be used with even values of ngkpt. This list is
much less exhaustive than the above-mentioned automatic procedure.

1. When the primitive vectors of the lattice do NOT form a FCC or a BCC lattice, the usual
(shifted) Monkhorst-Pack grids are formed by using nshiftk=1 and shiftk 0.5 0.5 0.5. This is
often the preferred k–point sampling. For a non-shifted Monkhorst-Pack grid, use nshiftk=1
and shiftk 0.0 0.0 0.0, but there is little reason to do that.

The FCC k–point sampling defined with nshiftk=4 and shiftk

0.5 0.5 0.5
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5

is particularly efficient.

2. When the primitive vectors of the lattice form a FCC lattice, with rprim

0.0 0.5 0.5
0.5 0.0 0.5
0.5 0.5 0.0

the usual Monkhorst-Pack sampling will be generated by using nshiftk = 4 and shiftk

0.5 0.5 0.5
0.5 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.5

3. When the primitive vectors of the lattice form a BCC lattice, with rprim

-0.5 0.5 0.5
0.5 -0.5 0.5
0.5 0.5 -0.5

the usual Monkhorst-Pack sampling will be generated by using nshiftk= 2 and shiftk

0.25 0.25 0.25
-0.25 -0.25 -0.25

However, the simple sampling nshiftk=1 and shiftk 0.5 0.5 0.5 is excellent.

4. For hexagonal lattices, one can use nshiftk= 1 and shiftk 0.0 0.0 0.5.

90



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.1.24 symrel

Mnemonics:SYMmetry in REaL space
Characteristic:
Variable type: integer array symrel(3,3,nsym)
Default is the identity matrix for one symmetry.

Gives “nsym” 3x3 matrices expressing space group symmetries in terms of their action on the
direct (or real) space primitive translations.

It turns out that these can always be expressed as integers.
Always give the identity matrix even if no other symmetries hold, e.g. symrel 1 0 0 0 1 0 0 0 1
Also note that for this array as for all others the array elements are filled in a columnwise order

as is usual for Fortran.
The relation between the above symmetry matrices symrel, expressed in the basis of primitive

translations, and the same symmetry matrices expressed in cartesian coordinates, is as follows.
Denote the matrix whose columns are the primitive translations as R, and denote the cartesian
symmetry matrix as S. Then

symrel = R(inverse) * S * R
where matrix multiplication is implied. When the symmetry finder is used (see nsym), symrel

will be computed automatically.

4.1.25 tnons

Mnemonics: Translation NON-Symmorphic vectors
Characteristic:
Variable type: real array tnons(3,nsym)

Gives the (nonsymmorphic) translation vectors associated with the symmetries expressed in
“symrel”.

These may all be 0, or may be fractional (nonprimitive) translations expressed relative to the
real space primitive translations (so, using the “reduced” system of coordinates, see “xred”). If
all elements of the space group leave 0 0 0 invariant, then these are all 0.

When the symmetry finder is used (see nsym), tnons is computed automatically.

4.1.26 toldfe

Mnemonics: TOLerance on the DiFference of total Energy
Characteristic:
Variable type: real parameter
Default is 0.0 (stopping condition ignored)

Sets a tolerance for absolute differences of total energy that, reached TWICE successively, will
cause one SCF cycle to stop (and ions to be moved).

Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ charac-
teristics. (1 Ha=27.2113961 eV)

If set to zero, this stopping condition is ignored.
Effective only when SCF cycles are done (iscf > 0). In this case, since toldfe, toldff, tolvrs and

tolwfr are aimed at the same goal (causing the SCF cycle to stop), one and only one of these must
be specified.

Because of machine precision, it is not worth to try to obtain differences in energy that are
smaller than about 1.0×10−12 of the total energy. To get accurate stresses may be quite demand-
ing.

91



4.1. BASIC VARIABLES, VARBAS

4.1.27 toldff

Mnemonics: TOLerance on the DiFference of Forces
Characteristic:
Variable type: real parameter
Default is 0.0 (stopping condition ignored)

Sets a tolerance for differences of forces (in hartree/bohr) that, reached TWICE successively,
will cause one SCF cycle to stop (and ions to be moved).

If set to zero, this stopping condition is ignored.
Effective only when SCF cycles are done (iscf > 0). In this case, since toldfe, toldff, tolvrs

and tolwfr are aimed at the same goal (causing the SCF cycle to stop), one and only one of these
must be specified. This tolerance applies to any particular cartesian component of any atom,
INCLUDING fixed ones. This is to be used when trying to equilibrate a structure to its lowest
energy configuration (ionmov=2), or in case of molecular dynamics (ionmov=1)

A value ten times smaller than tolmxf is suggested (for example 5.0× 10−6 Hartree/Bohr).
This stopping criterion is not allowed for RF calculations.

4.1.28 tolvrs

Mnemonics: TOLerance on the potential V(r) ReSidual
Characteristic:
Variable type: real parameter
Default is 0.0 (stopping condition ignored)

Sets a tolerance for potential residual that, when reached, will cause one SCF cycle to stop
(and ions to be moved).

If set to zero, this stopping condition is ignored.
Effective only when SCF cycles are done (iscf > 0). In this case, since toldfe, toldff, tolvrs and

tolwfr are aimed at the same goal (causing the SCF cycle to stop), one and only one of these must
be specified.

To get accurate stresses may be quite demanding.

4.1.29 tolwfr

Mnemonics: TOLerance on WaveFunction squared Residual
Characteristic:
Variable type: real parameter
Default is 0.0d0 (stopping criterion ignored)

Gives a convergence tolerance for the largest squared “residual” (defined below) for any given
band. The squared residual is:

< nk|(H − E)2|nk >,E =< nk|H|nk >, (4.2)

which clearly is nonnegative and goes to 0 as the iterations converge to an eigenstate. With the
squared residual expressed in Hartrees2 (Hartrees squared), the largest squared residual (called
residm) encountered over all bands and k–points must be less than tolwfr for iterations to halt
due to successful convergence.

Note that if iscf > 0, this criterion should be replaced by those based on toldfe (preferred for
ionmov==0), toldff (preferred for ionmov 6= 0) or tolvrs (preferred for theoretical reasons!).

When tolwfr is 0.0, this criterion is ignored, and a finite value of toldfe, toldff or tolvrs must
be specified. This also imposes a restriction on taking an ion step; ion steps are not permitted
unless the largest squared residual is less than tolwfr, ensuring accurate forces.

To get accurate stresses may be quite demanding.

92



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Note that the preparatory GS calculations before a RF calculations must be highly converged.
Typical values for these preparatory runs are tolwfr between 1.0× 10−16 and 1.0× 10−22.
Note that tolwfr is often used in the test cases, but this is tolwfr purely for historical reasons:

except when iscf < 0, other critera should be used.

4.1.30 typat

Mnemonics: TYPE of atoms
Characteristic:
Variable type: integer array typat(natom) (or: typat(natrd), if the geometry builder is used)
Default is 1 (for natom=1)

Array giving an integer label to every atom in the unit cell to denote its type.
The different types of atoms are constructed from the pseudopotential files. There are at most

ntypat types of atoms. As an example, for BaTiO3, where the pseudopotential for Ba is number
1, the one of Ti is number 2, and the one of O is number 3, the actual value of the typat array
might be:

typat 1 2 3 3 3

The array typat has to agree with the actual locations of atoms given in xred, xcart or xangst,
and the input of pseudopotentials has to be ordered to agree with the atoms identified in typat.

The nuclear charge of the elements, given by the array znucl, also must agree with the type
of atoms designated in “typat”. The array typat is not constrained to be increasing. An internal
representation of the list of atoms, deep in the code (array atindx), groups the atoms of same type
together. This should be transparent to the user, while keeping efficiency.

4.1.31 udtset

Mnemonics: Upper limit on DaTa SETs
Characteristic:
Variable type: integer array udtset(2)
No Default (since it is not used when it is not defined).

Used to define the set of indices in the multi-data set mode, when a double loop is needed (see
later).

The values of udtset must be between 1 and 9, and their product must be equal to ndtset.
If udtset is used, the input variable jdtset cannot be used.
wtk
Mnemonics: WeighTs for K points

Characteristic:
Variable type: real array wtk(nkpt)
Default value is nkpt*1.0d0.

Gives the k–point weights.
The k–point weights will have their sum normalized to 1 (unless occopt=2; see description of

occopt) within the program and therefore may be input with any arbitrary normalization. This
feature helps avoid the need for many digits in representing fractional weights such as 1/3.

wtk is ignored if iscf is not positive, except if iscf = −3.

4.1.32 xangst

Mnemonics: vectors (X) of atom positions in cartesian coordinates -length in ANGSTrom-
Characteristic: NOT INTERNAL

93



4.1. BASIC VARIABLES, VARBAS

Variable type: real array xangst(3,natom) (or xangst(3,natrd) if the geometry builder is used)

Gives the cartesian coordinates of atoms within unit cell, in angstrom. This information is
redundant with that supplied by array xred or xcart.

If xred and xangst are ABSENT from the input file and xcart is provided, then the values of
xred will be computed from the provided xcart (i.e. the user may use xangst instead of xred or
xcart to provide starting coordinates).

One and only one of xred, xcart and xangst must be provided.
The conversion factor between Bohr and Åis 1 Bohr=0.5291772083 Å(See Physics Today Au-

gust 1989 p.8).
Atomic positions evolve if ionmov 6= 0. In constrast with xred and xcart, xangst is not internal.

4.1.33 xcart

Mnemonics: vectors (X) of atom positions in CARTesian coordinates
Characteristic: EVOLVING, LENGTH
Variable type: real array xcart(3,natom) (or xcart(3,natrd) if the geometry builder is used)

Gives the cartesian coordinates of atoms within unit cell. This information is redundant
with that supplied by array xred or xangst. By default, xcart is given in bohr atomic units
(1 bohr=0.5291772083 Å), although Angstrom can be specified, if preferred, since xcart has the
‘LENGTH’ characteristics.

If xred and xangst are ABSENT from the input file and xcart is provided, then the values of
xred will be computed from the provided xcart (i.e. the user may use xcart instead of xred or
xangst to provide starting coordinates).

Atomic positions evolve if ionmov 6= 0.

4.1.34 xred

Mnemonics: vectors (X) of atom positions in REDuced coordinates
Characteristic: EVOLVING
Variable type: real array xred(3,natom) (or xred(3,natrd) if the geometry builder is used)
Default to all 0.0d0

Gives the atomic locations within unit cell in coordinates relative to real space primitive trans-
lations (NOT in cartesian coordinates). Thus these are fractional numbers typically between
0 and 1 and are dimensionless. The cartesian coordinates of atoms are given by: tcartesian =
t1 ∗ r1 ∗ a1 + t2 ∗ r2 ∗ a2 + t3 ∗ r3 ∗ a3, where (t1,t2,t3) are the “reduced coordinates” given in
columns of “xred”, (r1,r2,r3) are the columns of dimensionless array “rprim”, and (a1,a2,a3) are
the elements of the array “acell” giving length scales in bohr.

If you prefer to work only with cartesian coordinates, you may work entirely with “xcart” or
“xangst” and ignore xred, in which case xred must be absent from the input file. One and only
one of xred, xcart and Atomic positions evolve if ionmov 6= 0.

4.1.35 znucl

Mnemonics: charge -Z- of the NUCLeus
Characteristic: NO MULTI
Variable type: real array znucl(npsp)

Gives nuclear charge for each type of pseudopotential, in order.
If znucl does not agree with nuclear charge, as given in pseudopotential files, the program

writes an error message and stops.
N.B.: In the pseudopotential files, znucl is called “zatom”.

94



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.2 Developpement variables, VARDEV

4.2.1 accesswff

Mnemonics: ACCESS to WaveFunction Files
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

Governs the method of access to the internal wavefunction files. Relevant only for the wave-
functions files for which the corresponding “mkmem”-type variable is zero, that is, for the wave-
functions that are not kept in core memory.

• 0 ⇒ Use standard Fortran IO routines

• 1 ⇒ Use MPI/IO routines (this option is only available in parallel)

• 2 ⇒ Use NetCDF routines (this option is not yet available)

The MPI/IO routines might be much more efficient than usual Fortran IO routines in the case
of a large number of processors, with a pool of disks attached globally to the processors, but not
one disk attached to each processor. For a cluster of workstations, where each processor has his
own temporaries, the use of accesswff=0 might be perfectly allright.

4.2.2 ceksph

Mnemonics: CEnter K SPHere
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

Control the set of plane waves in a sphere, generated for each k–point.

• 0 ⇒ do not center the sphere on Gamma

• 1 ⇒ do center the sphere on Gamma (this option is allowed only in the program newsp, not
in abinis or abinip)

The value 0 is desirable for all usual band structure calculation, since this choice allows the
symmetry to be preserved at each k–points, so that degeneracies are correct. The value 1 is used
to generate input wavefunctions to the GW code of Rex Gody and coworkers. This option is only
allowed in newsp.

4.2.3 dedlnn

Mnemonics:
Characteristic: ENERGY
Variable type: real parameter
Default dedlnn is 0, i.e. no correction.

Gives a value for derivative d(Etotal)/d(log(Npw)) for given value of ecut. Here “log” refers
to a natural, base “e” logarithm. Since Etotal is an energy, dedlnn is also an energy. Can be
specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ characteristics. (1
Ha=27.2113961 eV).

dedlnn is used to compute the Pulay correction to the stress tensor using: correction=(1/ucvol)*dedlnn.
See the discussion on the stress tensor given below.

95



4.2. DEVELOPPEMENT VARIABLES, VARDEV

This value must be computed independently by making several runs at fixed geometry and
variable ecut, generally within +/- 3% of the desired ecut, and using the Etotal(npw) data to
compute the derivative.

NOTE: ABINIT computes the stress tensor whenever a self-consistent energy run is performed,
but the values along the diagonal of the stress tensor can have large systematic errors unless a
user-provided value of dedlnn is input so that the appropriate Pulay correction to the diagonal
stress tensor is computed.

An alternative (and more elegant) way to correct these systematic errors is provided through
the use of the ecutsm input variable.

4.2.4 densty

Mnemonics: initial DENSity for each TYpe of atom
Characteristic: DEVELOP
Variable type: real array densty(ntypat)
Default is 0.0d0.

Gives a rough description of the initial GS density, for each type of atom. This value is only
used to create the first exchange and correlation potential, and is not used anymore afterwards.

For the time being, it corresponds to an average radius (a.u.) of the density, and is used to
generate a gaussian density. If set to 0.0d0, an optimized value is used.

No meaning for RF calculations.

4.2.5 effmass

Mnemonics: EFFective MASS
Characteristic: DEVELOP
Variable type: real number
Default value is one.

This parameter allows to change the electron mass, with respect to its experimental value.

4.2.6 eshift

Mnemonics: Energy SHIFT
Characteristic: DEVELOP, ENERGY
Variable type: real number
Default value is zero.

Used only if wfoptalg=3. eshift gives the shift of the energy used in the shifted Hamiltonian
squared. The algorithm will determine eigenvalues and eigenvectors centered on eshift.

Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ charac-
teristics. (1 Ha=27.2113961 eV)

4.2.7 exchn2n3

Mnemonics: EXCHange N2 and N3
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

If exchn2n3 is 1, the internal representation of the FFT arrays in reciprocal space will be
array(n1,n3,n2), where the second and third dimensions have been switched. This is to allow to
be coherent with the exchn2n3=4xx FFT treatment.

96



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.2.8 fftalg

Mnemonics: Fast Fourier Transform ALGorithm
Characteristic: DEVELOP
Variable type: integer parameter
Default is 112, except for VPP Fujitsu, for which the Default is 111, and for NEC, for which the
default is 200.

Allows to choose the algorithm for Fast Fourier Transforms. These have to be used when
applied to wavefunctions (routine fourwf.f), as well as when applied to densities and potentials
(routine fourdp.f). Presently, it is the concatenation of three digits, labelled (A), (B) and (C).

The first digit (A) is to be chosen among 1, 2, 3 and 4:

• 1 ⇒ use FFT routines written by S. Goedecker.

• 2⇒ use machine-dependent FFT algorithm, taken from the vendor library, if it exists and if
it has been implemented. The bare fftalg=200 has little chance to be faster than fftalg=112,
but it might be tried. Implementing library subroutines with fftalg 6= 200 has not yet been
done. Currently implemented library subroutines (fftalg=200) are:

– on HP, z3dfft from Veclib;

– on DEC Alpha, zfft 3d from DXML;

– on NEC, ZFC3FB from ASL lib;

– on SGI, zfft3d from complib.sgimath

• 3 ⇒ use serial or multi-threaded FFTW fortran routines (http://www.fftw.org). Currently
implemented with fftalg=300.

• 4 ⇒ use FFT routines written by S. Goedecker, 2002 version, that will be suited for MPI
and OpenMP parallelism.

The second digit (B) is related to fourdp.f:

• 0 ⇒ only use Complex-to-complex FFT

• 1 ⇒ real-to-complex is also allowed (only coded for A==1)

The third digit (C) is related to fourwf.f:

• 0 ⇒ no use of zero padding

• 1 ⇒ use of zero padding (only coded for A==1 and A==4)

• 2⇒ use of zero padding, and also combines actual FFT operations (using 2 routines from S.
Goedecker) with important pre- and post-processing operations, in order to maximize cache
data reuse. This is very efficient for cache architectures. (coded for A==1 and A==4, but
A==4 is not yet sufficiently tested)

Internal representation as ngfft(7).

4.2.9 fftcache

Mnemonics: Fast Fourier Transform CACHE size
Characteristic: DEVELOP
Variable type: integer parameter
Default is 16. Not yet machine-dependent.

Gives the cache size of the current machine, in Kbytes.
Internal representation as ngfft(8).

97



4.2. DEVELOPPEMENT VARIABLES, VARDEV

4.2.10 freqsusin

Mnemonics: FREQuencies for the SUSceptibility matrix: the INcrement
Characteristic: DEVELOP
Variable type: real parameter, positive or zero
Default is 0.0

Define, with freqsuslo, the series of imaginary frequencies at which the susceptibility matrix
should be computed.

This is still under development.

4.2.11 freqsuslo

Mnemonics: FREQuencies for the SUSceptibility matrix: the LOwest frequency
Characteristic: DEVELOP
Variable type: real parameter, positive or zero
Default is 0.0

Define, with freqsusin, the series of imaginary frequencies at which the susceptibility matrix
should be computed.

This is still under development.

4.2.12 idyson

Mnemonics: Integer giving the choice of method for the DYSON equation
Characteristic: DEVELOP
Variable type: integer parameter
Default value is 1.

Choice for the method used to solve the Dyson equation in the calculation of the interacting
susceptibility matrix or/and in the calculation of the ACFD exchange-correlation energy:

• idyson=1: Solve the Dyson equation by direct matrix inversion

• idyson=2: Solve the Dyson equation as a first-order differential equation with respect to the
coupling constant lambda - only implemented for the RPA at the present stage (see header
of dyson de.f for details)

• idyson=3: Calculate only the diagonal of the interacting susceptibility matrix by self-
consistently computing the linear density change in response to a set of perturbations. Only
implemented for the RPA at the present stage, and entirely experimental (see dyson sc.f for
details).

4.2.13 ikhxc

Mnemonics: Integer option for KHXC = Hartree XC kernel
Characteristic:
Variable type: integer parameter
Default value is 1.

Define the HXC kernel, in the cases for which it can be dissociated with the choice of the HXC
functional given by ixc, namely the TD-DFT computation of excited states (iscf = −1), and the
computation of the susceptibility matrix (for ACFD purposes). Options 2 to 6 are for the ACFD
only.

• 0 ⇒ RPA for the TDDFT but no kernel for the ACFD (testing purposes).

98



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• 1 ⇒ RPA for the TDDFT and ACFD.

• 2 ⇒ ALDA (PW92) for the ACFD

• 3 ⇒ PGG for the ACFD [M. Petersilka, U.J. Gossmann and E.K.U. Gross, PRL 76,1212
(1996)]

• 4⇒ BPG for the ACFD. This amounts to half the PGG kernel plus half the ALDA kernel for
spin-compensated systems [K. Burke, M. Petersilka and E.K.U. Gross, in “Recent Advances
in Density Functional Methods”, Vol. III, edited by P. Fantucci and A. Bencini (World
Scientific, Singapore, 2002)]

• 5 ⇒ Linear energy optimized kernel [J. Dobson and J. Wang, PRB 62, 10038 (2000)]

• 6 ⇒ Non-linear energy optimized kernel [J. Dobson and J. Wang, PRB 62, 10038 (2000)]

For ACFD-ALDA, BPG and energy optimized kernels are highly experimental and not tested
yet!!! For ACFD calculations, a cut-off density has been defined for the ALDA, BPG and en-
ergy optimized kernels: let rhomin = userre*rhomax (where rhomax is the maximum density
in space); then the actual density used to calculate the local part of these kernels at point r is
max(rho(r),rhomin.

4.2.14 intexact

Mnemonics: INTegration using an EXACT scheme
Characteristic: DEVELOP
Variable type: integer parameter
Default value is 0.

Relates to the ACFD xc functionals only. If intexact > 0, the integration over the coupling
constant will be performed analytically in the RPA and in the two-electron PGG approximation
for the ACFD exchange-correlation energy. Otherwise, the integration over the coupling constant
will be performed numerically (also see ndyson and idyson. Note that the program will stop in
intexact > 0 and ikhxc 6= 1 (RPA) or ikhxc 6= 3 (PGG, with two electrons)

4.2.15 intxc

Mnemonics: INTerpolation for eXchange-Correlation
Characteristic: DEVELOP
Variable type: integer parameter
Default value is 0.

• 0 ⇒ do “usual” xc quadrature on fft grid

• 1 ⇒ do higher accuracy xc quadrature using fft grid and additional points at the centers
of each cube (doubles number of grid points)–the high accuracy version is only valid for
boxcut≥2. If boxcut ¡ 2, the code stops.

For RF calculations only intxc=0 is allowed yet. Moreover, the GS preparation runs (giving
the density file and zero-order wavefunctions) must be done with intxc=0

Prior to ABINITv2.3, the choice intxc=1 was favoured (it was the default), but the continuation
of the development of the code lead to prefer the default intxc=0. Indeed, the benefit of intxc=1
is rather small, while making it available for all cases is a non-negligible development effort. Other
targets are prioritary . . . You will notice that many automatice tests use intxc=1. Please, do not
follow this historical choice for your production runs.

99



4.2. DEVELOPPEMENT VARIABLES, VARDEV

4.2.16 iprcch

Mnemonics: Integer for PReConditioning of CHarge response
Characteristic: DEVELOP
Variable type: integer parameter
Default for iprcch is 2, unless ionmov=4 and iscf=5, in which case iprcch is automatically put to 3.

Used when iscf > 0, to define the SCF preconditioning scheme. Potential-based preconditioning
schemes for the SCF loop are still under development. The present parameter (charge part: mixed
electronic-atomic) describe the way a change of density is derived from a change of atomic position.
Supported values:

• 0 ⇒ fixed charge

• 1 ⇒ rigid ion hypothesis (atomic charge moves with atom) used to correct the forces

• 2⇒ rigid ion hypothesis (atomic charge moves with atom) used to correct forces and density

• 3⇒ a different implementation of the rigid ion hypothesis (atomic charge moves with atom)
used to correct forces and density

For the time being, the choice 3 must be used with ionmov=4 and iscf=5. Otherwise, use the
choice 2.

No meaning for RF calculations.

4.2.17 iprcfc

Mnemonics: Integer for PReConditioner of Force Constants
Characteristic: DEVELOP
Variable type: integer parameter
Default for iprcfc is 0.

Used when iscf > 0, to define the SCF preconditioning scheme. Potential-based preconditioning
schemes for the SCF loop are still under development.

The present parameter (force constant part) describe the way the a change of force is derived
from a change of atomic position.

Supported values:

• 0 ⇒ hessian is the identity matrix

• 1 ⇒ hessian is 0.5 times the identity matrix

• 2 ⇒ hessian is 0.25 times the identity matrix

• −1 ⇒ hessian is twice the identity matrix

• . . . (simply corresponding power of 2 times the identity matrix)

No meaning for RF calculations.

4.2.18 isecur

Mnemonics: Integer for level of SECURity choice
Characteristic: DEVELOP
Variable type: integer
Default is 0.

In the presently used algorithms, there is a compromise between speed and robustness, that
can be tuned by using isecur.

100



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

If isecur=0, an extrapolation of out-of-line data is allowed, and might save one non-SCF cal-
culation every two line minimisation when some stability conditions are fulfilled (since there are
2 non-SCF calculations per line minimisation, 1 out of 4 is saved)

Using isecur=1 or higher integers will raise gradually the threshold to make extrapolation.
Using isecur = −2 will allow to save 2 non-SCF calculations every three line minimisation, but

this can make the algorithm unstable. Lower values of isecur allows for more (tentative) savings.
In any case, there must be one non-SCF computation per line minimisation.

No meaning for RF calculations yet.

4.2.19 istatr

Mnemonics: Integer for STATus file repetition Rate

4.2.20 istatshft

Mnemonics: Integer for STATus file SHiFT

Characteristic: DEVELOP, NO MULTI
Variable type: integer parameter
Default istatr is 49, and 149 for Cray T3E (slow I/Os). Values lower than 10 may not work on
some machines. Default istatshft is 1.

Govern the rate of output of the status file. This status file is written when the number of the
call to the status subroutine is equal to ‘istatshft’ modulo ‘istatr’, so that it is written once every
’istatr’ call. There is also a writing for each of the 5 first calls, and the 10th call.

4.2.21 istwfk

Mnemonics: Integer for choice of STorage of WaveFunction at each k point
Characteristic:
Variable type: integer array istwfk(nkpt)
Default is 0 for all k–points for GS calculations. For RF calculations, the Default is not used: ist-
wfk is forced to be 1 deep inside the code, for all k–points. For spin-orbit calculations (nspinor=2),
istwfk is also forced to be 1, for all k–points.

Control the way the wavefunction for each k–point is stored inside ABINIT, in reciprocal space.
For the GS calculations, in the “cg” array containing the wavefunction coefficients, there is

for each k–point and each band, a segment cg(1:2,1:npw). The ‘full’ number of plane wave is
determined by ecut. However, if the k–point coordinates are build only from zeroes and halves (see
list below), the use of time-reversal symmetry (that connects coefficients) has been implemented,
in order to use real-to-complex FFTs (see fftalg), and to treat explicitly only half of the number
of plane waves (this being used as ‘npw’).

For the RF calculations, there is not only the “cg” array, but also the “cgq” and “cg1” arrays.
For the time-reversal symmetry to decrease the number of plane waves of these arrays, the q vector
MUST be (0 0 0). Then, for each k–point, the same rule as for the RF can be applied.

WARNING (991018): for the time being, the time-reversal symmetry cannot be used in the
RF calculations.

• 1 ⇒ do NOT take advantage of the time-reversal symmetry

• 2 ⇒ use time-reversal symmetry for k=( 0 0 0 )

• 3 ⇒ use time-reversal symmetry for k=(1/2 0 0 )

• 4 ⇒ use time-reversal symmetry for k=( 0 0 1/2)

101



4.2. DEVELOPPEMENT VARIABLES, VARDEV

• 5 ⇒ use time-reversal symmetry for k=(1/2 0 1/2)

• 6 ⇒ use time-reversal symmetry for k=( 0 1/2 0 )

• 7 ⇒ use time-reversal symmetry for k=(1/2 1/2 0 )

• 8 ⇒ use time-reversal symmetry for k=( 0 1/2 1/2)

• 9 ⇒ use time-reversal symmetry for k=(1/2 1/2 1/2)

• 0 ⇒ (preprocessed) for each k–point, choose automatically the appropriate time-reversal
option when it is allowed, and chose istwfk=1 for all the other k–points.

Note that the input variable “mkmem” also controls the wavefunction storage, but at the level
of core memory versus disk space.

4.2.22 ldgapp

Mnemonics: Lein-Dobson-Gross approximation
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

Concern only the ACFD computation of the correlation energy (optdriver=3).
If ldgapp > 0, the Lein, Dobson and Gross first-order approximation to the correlation energy

is also computed during the ACFD run. [See Lein, Dobson and Gross, J. Comput. Chem. 20,12
(1999)].

This is only implemented for the RPA, for the PGG kernel and for the linear energy optimized
kernel at the present time.

4.2.23 mqgrid

Mnemonics: Maximum number of Q-space GRID points for pseudopotentials
Characteristic: DEVELOP
Variable type: integer parameter
Default is 1201.

Govern the size of the one-dimensional information related to pseudopotentials, in reciprocal
space: potentials, or projector functions.

4.2.24 nbandsus

Mnemonics: Number of BANDs to compute the SUSceptibility
Characteristic:
Variable type: integer parameter
Default value is nband.

Number of bands to be used in the calculation of the susceptibility matrix (ACFD only).

4.2.25 nbdblock

Mnemonics: Number of BanDs in a BLOCK
Characteristic: DEVELOP
Variable type: integer parameter
Default is 1

102



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

In case of non-standard, blocked algorithms for the optimization of the wavefunctions (that is,
if wfoptalg 6= 0), nbdblock defines the number of bands (or states) in a block.

4.2.26 ndyson

Mnemonics: Number of points to be added for the solution of the DYSON equation
Characteristic:
Variable type: integer parameter
Default value is −1.

Number of points to be added to lambda=0 and lambda=1 (that are always calculated for the
integration ober the coupling constant lambda in the ACFD calculation of the exchange-correlation
energy.

• ndyson = −1: let the code decide how many points to use (presently, 3 points for idyson=1
or 3, and 9 points for idyson=2)

• ndyson = 0: only compute the non-interacting and fully-interacting susceptibility matrices.

• ndyson > 0: use ndyson more points in ]0,1[

4.2.27 nfreqsus

Mnemonics: Number of FREQuencies for the SUSceptibility matrix
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0

If 0, no computation of frequency-dependent susceptibility matrix. If 1 or larger, will read
freqsuslo and freqsusin to define the frequencies (1 is currently the only value allowed)

4.2.28 nloalg

Mnemonics: Non Local ALGorithm
Characteristic: DEVELOP
Variable type: integer variable
Default is 4, except for the NEC where it is 2.

Allows to choose the algorithm for non-local operator application. On super-scalar architec-
tures, the Default nloalg=4 is the best, but you can save memory by using nloalg = −4. More
detailed explanations:

• nloalg=2: Should be efficient on vector machines. It is indeed the fastest algorithm for the
NEC, but actual tests on Fujitsu machine did not gave better performances than the other
options.

• nloalg=3: same as nloalg==2, but the loop order is inverted.

• nloalg=4: same as nloalg==3, but maximal use of registers has been coded. This should be
especially efficient on scalar and super-scalar machines. This has been confirmed by tests.

Negative values of nloalg correspond positive ones, where the phase precomputation has been
suppressed, in order to save memory space: an array double precision :: ph3d(2,npw,natom) is
saved (typically half the space needed for the wavefunctions at 1 k–point - this corresponds to the
silicon case). However, the computation of phases inside nonlop is somehow time-consuming.

Note: internally, nloalg is an array nloalg(1:4), that also allows to initialize, in order, jump,
mblkpw, and mincat (not documented). However, only the first component nloalg(1) is read as
an input variable.

103



4.2. DEVELOPPEMENT VARIABLES, VARDEV

4.2.29 nnsclo

Mnemonics: Number of Non-Self Consistent LOops
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

Gives the maximum number of non-self-consistent loops of nline line minimisations, in the SCF
case (when iscf > 0). In the case iscf ≤ 0, the number of non-self-consistent loops is determined
by nstep.

The Default value of 0 correspond to make the two first fixed potential determinations of
wavefunctions have 2 non-self consistent loops, and the next ones to have only 1 non-self consistent
loop.

4.2.30 optforces

Mnemonics: OPTions for the calculation of FORCES
Characteristic: DEVELOP
Variable type: integer parameter
Default is 1.

Allows to choose options for the calculation of forces.

• optforces=0: the forces are set to zero, and many steps of the computation of forces are
skipped

• optforces=1: calculation of forces at each SCF iteration, allowing to use forces as criterion
to stop the SCF cycles

• optforces=2: calculation of forces at the end of the SCF iterations (like the stresses) - NOT
YET IMPLEMENTED

4.2.31 ortalg

Mnemonics: ORThogonalisation ALGorithm
Characteristic: DEVELOP
Variable type: integer parameter
Default is 2.

Allows to choose the algorithm for orthogonalisation.
Positive or zero values make two projections per line minimisation, one before the precon-

ditioning, one after. This is the clean application of the band-by-band CG gradient for finding
eigenfunctions.

Negative values make only one projection per line mininisation.
The orthogonalisation step is twice faster, but the convergence is less good. This actually calls

to a better understanding of this effect.
ortalg=0, 1 or −1 is the conventional coding, actually identical to the one in versions prior to

1.7
ortalg=2 or −2 try to make better use of existing registers on the particular machine one is

running.
More demanding use of registers is provided by ortalg = 3 or −3, and so on.
The maximal value is presently 4 and −4.
Tests have shown that ortalg = 2 or −2 is suitable for use on the available platforms.

104



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.2.32 qprtrb

Mnemonics: Q-wavevector of the PERTurbation
Characteristic: DEVELOP
Variable type: integer array of three values
Default wavevector is 0 0 0.

Gives the wavevector, in units of reciprocal lattice primitive translations, of a perturbing
potential of strength vprtrb. See vprtrb for more explanation.

4.2.33 useria, userib, useric, userid, userie

Mnemonics: USER Integer variables A, B, C, D and E
Characteristic:
Variable type: integers
Default values are 0.

These are user-definable integers which the user may input and then utilize in subroutines of
his/her own design. They are not used in the official versions of the ABINIT code, and should
ease independent developments (hopefully integrated in the official version afterwards).

Internally, they are available in the dtset structured datatype, e.g. dtset%useria.

4.2.34 userra, userrb, userrc, userrd, userre

Mnemonics: USER Real variables A, B, C, D, and E
Characteristic:
Variable type: real numbers

These are user-definable with the same purpose as useri above.
Default value is 0.0.

4.2.35 useylm

Mnemonics: USE YLM (the spherical harmonics)
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

(Not working yet: purely for developpers)

4.2.36 vprtrb

Mnemonics: potential -V- for the PeRTuRBation
Characteristic: DEVELOP, ENERGY
Variable type: real array of 2 elements
Default value is 0.d0 0.d0.

Gives the real and imaginary parts of a scalar potential perturbation. Can be specified in Ha
(the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ characteristics.

This is made available for testing responses to such perturbations. The form of the perturba-
tion, which is added to the local potential, is:

• (vprtrb(1)+I*vprtrb(2))/2 at G=qprtrb and

• (vprtrb(1)-I*vprtrb(2))/2 at G=-qprtrb (see qprtrb also).

105



4.3. FILES HANDLING VARIABLES, VARFIL

4.2.37 wfoptalg

Mnemonics: WaveFunction OPTimisation ALGorithm
Characteristic: DEVELOP
Variable type: integer parameter
Default is 0.

Allows to choose the algorithm for the optimisation of the wavefunctions. The different possi-
bilities are:

• wfoptalg=0: standard state-by-state conjugate gradient algorithm, with no possibility to
parallelize over the states;

• wfoptalg=1: blocked conjugate gradient algorithm, with possibility to parallelize over the
states (or bands), but at the expense of a few more operations when a block of states has
been optimized separately, to obtain a coherent set of wavefunctions. The number of states
in a block is defined in nbdblock

• wfoptalg=2: minimisation of the residual with respect to different shifts, in order to cover the
whole set of occupied bands, with possibility to parallelize over blocks of states (or bands).
The number of states in a block is defined in nbdblock. THIS IS STILL IN DEVELOP-
MENT.

• wfoptalg=3: minimisation of the residual with respect to a shift. Available only in the
non-self-consistent case iscf = −2, in order to find eigenvalues and wavefunctions close to a
prescribed value.

4.3 Files handling variables, VARFIL

4.3.1 cmlfile

Mnemonics: Chemical Markup Language FILE
Characteristic: NO INTERNAL
Variable type: character string
Default is no file.

Used to import some of the data from one or more Chemical Markup Language 2 (CML2)
file(s) (one per dataset). Unlike most of the other input variables, it refers to a character string,
e.g.:

cmlfile ../t67.in_CML.xml

The file is preprocessed, and the relevant information is translated in order to be used as an
alternative to the usual input variables. Note that the input variables directly defined in the usual
input file have precedence over the CML data: the latter are used only when there is no occurence
of the corresponding keyword in the input file . . .

The ABINIT CML parser is still quite primitive. The mechanism followed to parse the CML
file is described afterwards.

The ABINIT CML parser will localize in the CML file the first occurence of a ‘molecule’
markup section. It will ignore all other occurences of ‘molecule’. Inside this ‘molecule’ section, it
will localize the first occurences of the ‘crystal’, ‘symmetry’ and ’atomArray’ sections. All other
occurences, and all other sections, are ignored.

The following ABINIT input variables will be extracted from these sections of the CML file (if
the data is available):

• acell from the first ‘scalar title=“a”’, ‘scalar title=“b”’, and ‘scalar=“c”’ sections (all three
must be present if one is present) in the ‘crystal’ section, expecting the data in Angstrom;

106



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• angdeg from the first ‘scalar title=“alpha”’, ‘scalar title=“beta”’, and ‘scalar title=“gamma”’
sections (all three must be present if one is present) in the ‘crystal’ section, expecting the
data in degrees;

• nsym, symrel and tnons from the content of ‘matrix’ sections in the ‘symmetry’ section;

• natom from the number of items in the first ‘atom’ sections in the ‘atomArray’ section;

• typat from the attribute ‘elementType’ in the ‘atom’ sections in the ‘atomArray’ section,
with identification of the pseudopotentials that have the correct nuclear charge, according
to the atomic symbol (the first pseudopotential with the correct nuclear charge, from the
pseudopotential list, will be used);

• xred from the attributes ‘xFract’, ‘yFract’, and ‘zFract’ (all three must be present if one is
present) in the ‘atom’ sections in the ‘atomArray’ section.

These limited parsing capabilities are enough for ABINIT to read the CML files it has created
thanks to the use of the prtcml input variable.

4.3.2 getden

Mnemonics: GET the DENsity from . . .
Characteristic:
Variable type: integer parameter
Default is 0.

Eventually used when ndtset > 0 (multi-dataset mode) and, in the case of a ground-state
calculation, if iscf < 0 (non-SCF calculation), to indicate that the starting density is to be taken
from the output of a previous dataset. It is used to chain the calculations, since it describes from
which dataset the OUTPUT density are to be taken, as INPUT density of the present dataset.

If getden==0, no such use of previously computed output density file is done.
If getden is positive, its value gives the index of the dataset from which the output density is

to be used as input.
If getden is −1, the output density of the previous dataset must be taken, which is a frequently

occuring case.
If getden is a negative number, it indicates the number of datasets to go backward to find the

needed file. In this case, if one refers to a non existant data set (prior to the first), the density
is not initialised from a disk file, so that it is as if getden = 0 for that initialisation. Thanks to
this rule, the use of getden −1 is rather straightforward: except for the first density, that is not
initialized by reading a disk file, the output density of one dataset is input of the next one.

Be careful: the output density file of a run with non-zero ionmov does not have the proper
name (it has a “TIM” indication) for use as an input of an iscf < 0 calculation.

One should use the output density of a ionmov==0 run.

4.3.3 getkss

Mnemonics: GET Kohn-Sham Structure from . . .
Characteristic: GW
Variable type: integer parameter
Default is 0.

Used when ndtset > 0 (multi-dataset mode) and optdriver=3 or 4 (a GW calculation), to
indicate that the KSS wavefunction file is to be taken from the output of a previous dataset. It is
used to chain the calculations, since it describes from which dataset the OUTPUT wavefunctions
are to be taken, as INPUT of the present dataset.

If getkss==0, no such use of previously computed output KSS file is done.

107



4.3. FILES HANDLING VARIABLES, VARFIL

If getkss is positive, its value gives the index of the dataset from which the output KSS file is
to be used as input.

If getkss is −1, the output KSS file of the previous dataset must be taken, which is a frequently
occuring case.

If getkss is a negative number, it indicates the number of datasets to go backward to find the
needed file. In this case, if one refers to a non existent data set (prior to the first), the KSS file is
not initialised from a disk file, so that it is as if getkss=0 for that initialisation.

4.3.4 getocc

Mnemonics: GET OCC parameters from . . .
Characteristic:
Variable type: integer parameter, an instance of a ‘get’ variable
Default is 0.

This variable is typically used to chain the calculations, in the multi-dataset mode (ndtset
> 0), since it describes from which dataset the array occ is to be taken, as input of the present
dataset. The occupation numbers are EVOLVING variables, for which such a chain of calculations
is useful.

If ==0, no use of previously computed values must occur.
If it is positive, its value gives the index of the dataset from which the data are to be used as

input data. It must be the index of a dataset already computed in the SAME run.
If equal to −1, the output data of the previous dataset must be taken, which is a frequently

occuring case. However, if the first dataset is treated, −1 is equivalent to 0, since no dataset has
yet been computed in the same run.

If another negative number, it indicates the number of datasets to go backward to find the
needed data (once again, going back beyond the first dataset is equivalent to using a null get
variable).

NOTE that a non-zero getocc MUST be used with occopt==2, so that the number of bands
has to be initialized for each k–point. Of course, these numbers of bands must be identical with
the numbers of bands of the dataset from which occ will be copied. The same is true for the
number of k–points.

4.3.5 getscr

Mnemonics: GET SCReening (the inverse dielectric matrix) from . . .
Characteristic: GW
Variable type: integer parameter
Default is 0.

Used when ndtset > 0 (multi-dataset mode) and optdriver=4 (sigma step of a GW calculation),
to indicate that the dielectric matrix (EPS file) is to be taken from the output of a previous dataset.

It is used to chain the calculations, since it describes from which dataset the OUTPUT dielectric
matrix are to be taken, as INPUT of the present dataset.

If getscr==0, no such use of previously computed output EPS file is done.
If getscr is positive, its value gives the index of the dataset from which the output EPS file is

to be used as input.
If getscr is −1, the output EPS file of the previous dataset must be taken, which is a frequently

occuring case.
If getscr is a negative number, it indicates the number of datasets to go backward to find the

needed file. In this case, if one refers to a non existent data set (prior to the first), the EPS file is
not initialised from a disk file, so that it is as if getscr=0 for that initialisation.

108



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.3.6 getwfk

Mnemonics: GET the wavefunctions from WFK file

4.3.7 getwfq

Mnemonics: GET the wavefunctions from WFQ file

4.3.8 get1wf

Mnemonics: GET the first-order wavefunctions from 1WF file

4.3.9 getddk

Mnemonics: GET the ddk wavefunctions from 1WF file
Characteristic:
Variable type: integer parameter
Default is 0.

Eventually used when ndtset > 0 (in the multi-dataset mode), to indicate starting wavefunc-
tions, as an alternative to irdwfk, irdwfq, ird1wf, or irdddk. One should first read the explanations
given for these latter variables.

The getwfk, getwfq, get1wf and getddk variables are typically used to chain the calculations in
the multi-dataset mode, since they describe from which dataset the OUTPUT wavefunctions are
to be taken, as INPUT wavefunctions of the present dataset.

We now focus on the getwfk input variable (the only one used in ground-state calculations),
but the rules for getwfq and get1wf are similar, with WFK replaced by WFQ or 1WF.

If getwfk==0, no use of previously computed output wavefunction file appended with DSx WFK
is done.

If getwfk is positive, its value gives the index of the dataset for which the output wavefunction
file appended with WFK must be used.

If getwfk is −1, the output wf file with WFK of the previous dataset must be taken, which is
a frequently occuring case.

If getwfk is a negative number, it indicates the number of datasets to go backward to find
the needed wavefunction file. In this case, if one refers to a non existent data set (prior to the
first), the wavefunctions are not initialised from a disk file, so that it is as if getwfk=0 for that
initialisation. Thanks to this rule, the use of getwfk −1 is rather straightforward: except for the
first wavefunctions, that are not initialized by reading a disk file, the output wavefunction of one
dataset is input of the next one.

In the case of a ddk calculation in a multidataset run, in order to compute correctly the
localisation tensor, it is mandatory to declare give getddk the value of the current dataset (i.e.
getddk3 3 ) - this is a bit strange and should be changed in the future.

4.3.10 get1den

Mnemonics: GET the wavefunctions from WFK file, DenSIFied?? (to be completed)

4.3.11 get1wfden

Mnemonics: GET the wavefunctions from WFK file, DenSIFied?? (to be completed)

109



4.3. FILES HANDLING VARIABLES, VARFIL

4.3.12 irdkss

Mnemonics: Integer that governs the ReaDing of KSS file
Characteristic: GW
Variable type: integer parameter
Default is 0.

Relevant only when optdriver=3 or 4. Indicate the file from which the dielectric matrix must
be obtained. As alternative, one can use the input variable getkss.

When optdriver=3 or 4, at least one of irdkss or getscr must be non-zero.
A non-zero value of irdkss is treated in the same way as other “ird” variables, see the section

4 of abinis_help.

4.3.13 irdscr

Mnemonics: Integer that governs the ReaDing of EPSilon
Characteristic: GW
Variable type: integer parameter
Default is 0.

Relevant only when optdriver=4. Indicate the file from which the dielectric matrix must be
obtained. As alternative, one can use the input variable getscr.

When optdriver=4, at least one of irdscr or getscr must be non-zero.
A non-zero value of irdscr is treated in the same way as other “ird” variables, see the section

4 of abinis_help.

4.3.14 irdwfk

Mnemonics: Integer that governs the ReaDing of WFK files

4.3.15 irdwfq

Mnemonics: Integer that governs the ReaDing of WFQ files

4.3.16 ird1wf

Mnemonics: Integer that governs the ReaDing of 1WF files

4.3.17 irdddk

Mnemonics: Integer that governs the ReaDing of DDK wavefunctions, in 1WF files
Characteristic:
Variable type: integer parameter
Default is 0.

Indicates eventual starting wavefunctions. As alternative, one can use the input variables
getwfk, getwfq, get1wf or getddk.

Ground-state calculation:

• only irdwfk and getwfk have a meaning

• at most one of irdwfk or getwfk can be non-zero

110



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• if irdwfk and getwfk are both zero, initialize wavefunctions with random numbers for ground
state calculation.

• if irdwfk = 1: read ground state wavefunctions from a disk file appended with WFK,
produced in a previous ground state calculation (see the section 4 of abinis_help).

Response-function calculation:

• one and only one of irdwfk or getwfk MUST be non-zero

• if irdwfk = 1: read ground state k–wavefunctions from a disk file appended with WFK,
produced in a previous ground state calculation (see the section 4 of abinis_help).

• only one of irdwfq or getwfq can be non-zero, if both of them are non-zero, use as k + q file
the one defined by irdwfk and/or getwfk

• if irdwfq = 1: read ground state k+ q–wavefunctions from a disk file appended with WFQ,
produced in a previous ground state calculation (see the section 4 of abinis_help).

• at most one of ird1wf or get1wf can be non-zero

• if both are zero, initialize first order wavefunctions to 0’s.

• if ird1wf = 1: read first-order wavefunctions from a disk file appended with 1WFx, produced
in a previous response function calculation (see the section 4 of abinis_help).

• at most one of irdddk or getddk can be non-zero

• one of them must be non-zero if an homogeneous electric field calculation is done (presently,
a ddk calculation in the same dataset is not allowed)

• if irdddk = 1: read first-order ddk wavefunctions from a disk file appended with 1WFx,
produced in a previous response function calculation (see the section 4 of abinis_help).

4.3.18 kssform

Mnemonics: Kohn Sham Structure file FORMat
Characteristic:
Variable type: integer parameter
Default is 1, i.e. the KSS format

Governs the choice of the format for the file that contains the Kohn-Sham electronic structure
information, for use in GW calculations, see the input variables optdriver and nbandkss.

• (obsolete) kssform=0, the STA file is generated together with a VKB file containing infor-
mation on the pseudopotential

• kssform=1, a single file .kss (double precision) containing complete information on the Kohn
Sham Structure (eigenstates and the pseudopotentials used) will be generated through full
diagonalization of the complete Hamiltonian matrix. The file has at the beginning the
standard abinit header

• (obsolete) kssform=2, the same as 1, but most of the relevant informations are in single
precision.

• kssform=3, a single file .kss (double precision) containing complete information on the Kohn
Sham Structure (eigenstates and the pseudopotentials used) will be generated through the
usual conjugate gradient algorithm (so, a restricted number of states) The file has at the
beginning the standard abinit header

Very important: for the time being, istwfk must be 1 for all the k–points.

111



4.3. FILES HANDLING VARIABLES, VARFIL

4.3.19 mffmem

Mnemonics: Maximum number of FFt grids in MEMory
Characteristic:
Variable type: integer parameter
Default is 1, i.e. an in-core solution.

Governs the choice of number of FFT arrays that will be kept permanently in core memory.
The allowed values are 0, in which case maximal use is made of disk space, saving core memory

at the expense of execution time (not much, usually), or 1, in which case everything is kept in
core memory.

More detailed explanations: if mffmem==0, some arrays of size double precision :: xx(nfft,nsppol)
will be saved on disk when the wavefunctions are optimized or when the Hartree and xc potential
is computed (which can require some sizeable memory space also).

The number of these arrays is 10 if iscf==5, 5 if iscf==1, and 4 if iscf==2 or 3. The saving of
memory can be appreciable especially when iscf==5 and nsppol=2.

4.3.20 mkmem

Mnemonics: Maximum number of K - points in MEMory
Characteristic:
Variable type: integer parameter
Default is nkpt, i.e. in-core solution.

Sets the maximum number of k–points for which the ground state wavefunctions are kept in
core memory at one time.

This value should either be 0, in which case an out-of-core solution will be used, or else nkpt,
in which case an in-core solution will be used.

Internal representation as mkmems(1)

4.3.21 prtcml

Mnemonics: PRinT CML file
Characteristic:
Variable type: integer parameter
Default is 0.

If set to 1 or a larger value, provide output of geometrical parameters using CML (the Chemical
Markup Language, see papers by P. Murray-Rust and H. Rzepa, especially J. Chem. Inf. Comput.
Sci. 39, 928-942 (1998) and the Web site http://www.xml-cml.org). Such file can be treated
automatically by tools developed to handle XML formatted files.

Such a CML file contains:

• The crystallographic information (space group number and the needed unit cell parameters
and angles)

• The list of symmetry elements

• The list of atoms in the cell (symbols and reduced coordinates)

If ionmov==0, the name of the CML file will be the root output name, followed by CML.xml.
If ionmov==1 or 2, the CML file will be output at each time step, with the name being made

of

• the root output name,

• followed by TIMx, where x is related to the timestep (see later)

112

http://www.xml-cml.org


CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• then followed by CML.xml

No output is provided by prtcml lower or equal to 0.

4.3.22 prtden

Mnemonics: PRinT the DENsity
Characteristic:
Variable type: integer parameter
Default is 0.

If set to 1 or a larger value, provide output of electron density in real space rho(r), in units of
electrons/Bohr3.

If ionmov==0, the name of the density file will be the root output name, followed by DEN.
If ionmov==1 or 2, density files will be output at each time step, with the name being made

of

• the root output name,

• followed by TIMx, where x is related to the timestep (see later)

• then followed by DEN

The file structure of the unformatted output file is described below, see section 6).
No output is provided by prtden lower or equal to 0.

4.3.23 prtdos

Mnemonics: PRinT the Density Of States
Characteristic:
Variable type: integer parameter
Default is 0.

Provide output of Density of States if set to 1, 2 or 3. Can either use a smearing technique
(prtdos=1), or the tetrahedron method (prtdos=2). If prtdos=3, provide output of Local Density
of States inside a sphere centered on an atom, as well as the angular-momentum projected DOS,
in the same sphere. The resolution of the linear grid of energies for which the DOS is computed
can be tuned thanks to dosdeltae.

If prtdos=1, the smeared density of states is obtained from the eigenvalues, properly weighted
at each k–point using wtk, and smeared according to occopt and tsmear. All levels that are present
in the calculation are taken into account (occupied and unoccupied). Note that occopt must be
between 3 and 7.

In order to compute the DOS of an insulator with prtdos=1, compute its density thanks to
a self-consistent calculation (with a non-metallic occopt value, 0, 1 or 2), then use prtdos=1,
together with iscf = −3, and a metallic occopt, between 3 and 7, providing the needed smearing.
If prtdos=1, the name of the DOS file is the root name for the output files, followed by “ DOS”.

If prtdos=2, the DOS is computed using the tetrahedron method. As in the case of prtdos=1,
all levels that are present in the calculation are taken into account (occupied and unoccupied).
In this case, the k–points must have been defined using the input variable ngkpt or the input
variable kptrlatt. There must be at least two non-equivalent points in the Irreducible Brillouin
Zone to use prtdos=2. There is no need to take care of the occopt or tsmear input variables, and
there is no subtlety to be taken into account for insulators. The computation can be done in the
self-consistent case as well as in the non-self-consistent case, using iscf = −3. This allows to refine
the DOS at fixed starting density.

In that case, if ionmov==0, the name of the potential file will be the root output name,
followed by DOS (like in the prtdos=1 case).

113



4.3. FILES HANDLING VARIABLES, VARFIL

However, if ionmov==1 or 2, potential files will be output at each time step, with the name
being made of

• the root output name,

• followed by TIMx, where x is related to the timestep (see later)

• then followed by DOS.

If prtdos=3, the same tetrahedron method as for prtdos=2 is used, but the DOS inside a sphere
centered on some atom is delivered, as well as the angular-momentum projected (l=0,1,2,3,4) DOS
in the same sphere. The preparation of this case, the parameters under which the computation is
to be done, and the file denomination is similar to the prtdos=2 case. However, three additional
input variables might be provided, describing the atoms that are the center of the sphere (input
variables natsph and iatsph), as well as the radius of this sphere (input variable ratsph).

4.3.24 prteig

Mnemonics: PRinT EIGenenergies
Characteristic:
Variable type: integer parameter
Default is 0 or 1?????.

(Not yet active)

4.3.25 prtfsurf

Mnemonics: PRinT Fermi SURFace file
Characteristic:
Variable type: integer parameter
Default is 0.

If set to 1, print Fermi surface file. For the time being, under development.

4.3.26 prtgeo

Mnemonics: PRinT the GEOmetry analysis
Characteristic:
Variable type: integer parameter
Default is 0.

If set to 1 or a larger value, provide output of geometrical analysis (bond lengths and bond
angles). The value of prtgeo is taken by the code to be the maximum coordination number of
atoms in the system.

It will deduce a maximum number of “nearest” and “next-nearest” neighbors accordingly, and
compute corresponding bond lengths.

It will compute bond angles for the “nearest” neighbours only.
If ionmov==0, the name of the file will be the root output name, followed by GEO.
If ionmov==1 or 2, one file will be output at each time step, with the name being made of

• the root output name,

• followed by TIMx, where x is related to the timestep (see later)

• then followed by GEO

The content of the file should be rather self-explanatory.
No output is provided by prtgeo is lower than or equal to 0.
If prtgeo > 0, the maximum number of atoms (natom) is 9999.

114



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.3.27 prtkpt

Mnemonics: PRinT the K-PoinTs sets
Characteristic:
Variable type: integer parameter
Default is 0.

If set 6= 0, proceeds to a detailed analysis of different k–point grids. Works only if kptopt is
positive, and neither kptrlatt nor ngkpt are defined. ABINIT will stop after this analysis.

Different sets of k–point grids are defined, with common values of shiftk. In each set, ABINIT
increases the length of vectors of the supercell (see kptrlatt) by integer steps. The different sets
are labelled by “iset”. For each k–point grid, kptrlen and nkpt are computed (the latter always
invoking kptopt=1, that is, full use of symmetries). A series is finished when the computed
kptrlen is twice larger than the input variable kptrlen. After the examination of the different
sets, ABINIT summarizes, for each nkpt, the best possible grid, that is, the one with the largest
computed kptrlen.

Note that this analysis is also performed when prtkpt=0, as soon as neither kptrlatt nor ngkpt
are defined. But, in this case, no analysis report is given, and the code selects the grid with the
smaller ngkpt for the desired kptrlen. However, this analysis takes some times (well sometimes, it
is only a few seconds - it depends on the value of the input kptrlen), and it is better to examine
the full analysis for a given cell and set of symmetries, shiftk for all the production runs.

4.3.28 prtpot

Mnemonics: PRinT the iotal (kohn-sham)POTential

4.3.29 prtvha

Mnemonics: PRinT V HArtree

4.3.30 prtvhxc

Mnemonics: PRinT V (Hartree+XC)

4.3.31 prtvxc

Mnemonics: PRinT V XC
Characteristic:
Variable type: integer parameter
Default is 0.

If set ≥ 1, provide output of different potentials.
For prtpot, output the total (Kohn-Sham) potential, sum of local pseudo-potential, Hartree

potential, and xc potential.
For prtvha, output the Hartree potential.
For prtvhxc, output the sum of Hartree potential and xc potential.
For prtvxc, output the exchange-correlation potential.
If ionmov==0, the name of the potential file will be the root output name, followed by POT,

VHA, VHXC, or VXC.
If ionmov==1 or 2, potential files will be output at each time step, with the name being made

of

115



4.3. FILES HANDLING VARIABLES, VARFIL

• the root output name,

• followed by TIMx, where x is related to the timestep (see later)

• then followed by POT, VHA, VHXC, or VXC.

The file structure of this unformatted output file is described in section 6.6 of abinis_help.
No output is provided by a negative value of these variables.

4.3.32 prtstm

Mnemonics: PRinT the STM density
Characteristic:
Variable type: integer parameter
Default is 0.

If set to 1 or a larger value, provide output of the electron density in real space rho(r), made
only from the electrons close to the Fermi energy, in a range of energy (positive or negative),
determined by the (positive or negative, but non-zero) value of the STM bias stmbias.

This is a very approximate way to obtain STM profiles: one can choose an equidensity surface,
and consider that the STM tip will follow this surface. Such equidensity surface might be deter-
mined with the help of Cut3D, and further post-processing of it (to be implemented). The big
approximations of this technique are: neglect of the finite size of the tip, and position-independent
transfer matrix elements between the tip and the surface.

The charge density is provided in units of electrons/Bohr3. The name of the STM density file
will be the root output name, followed by STM. Like a DEN file, it can be analyzed by cut3d.
The file structure of this unformatted output file is described in section 6.5 of abinis_help.

For the STM charge density to be generated, one must give, as an input file, the converged
wavefunctions obtained from a previous run, at exactly the same k–points and cut-off energy,
self-consistently determined, using the occupation numbers from occopt=7.

In the run with positive prtstm, one has to use:

• positive iscf

• occopt=7, with specification of tsmear

• nstep=1

• the tolwfr convergence criterion

• ionmov=0 (this is the default value)

• optdriver=0 (this is the default value)

Note that you might have to adjust the value of nband as well, for the treatment of unoccupied
states, because the automatic determination of nband will often not include enough unoccupied
states.

When prtstm is non-zero, the stress tensor is set to zero.
No output of STM file is provided by prtstm lower or equal to 0.

4.3.33 prtvol

Mnemonics: PRinT VOLume
Characteristic:
Variable type: integer parameter
Default is 0.

116



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Control the volume of printed output.
Standard choice is 0. Positive values print more in the output and log files, while negative

values are for debugging (or preprocessing only), and cause the code to stop at some point.

• 0⇒ there is a limit on the number of k–points for which related information will be written.
This limit is presently 50. Due to some subtlety, if for some dataset prtvol is non-zero, the
limit for input and output echoes cannot be enforced, so it is like if prtvol=1 for the all the
dataset for which prtvol was set to 0.

• 1 ⇒ there is no such limit for the input and output echoes, in the main output file.

• 2 ⇒ there is no such limit in the whole main output file.

• 3 ⇒ there is no such limit in both output and log files.

• 10 ⇒ no limit on the number of k–points, and moreover, the eigenvalues are printed for
every SCF iteration, as well as other additions (to be specified in the future . . . )

Debugging options:

• = −1 ⇒ stop in abinis (main program), before call gstate. Useful to see the effect of
the preprocessing of input variables (memory needed, effect of symmetries, k–points . . . )
without going further. Run very fast, on the order of the second.

• = −3⇒ stop in gstate, before call scfcv, move or brdmin. Useful to debug pseudopotentials

• = −4⇒ stop in move, after completion of all loops

• = −5⇒ stop in brdmin, after completion of all loops

• = −6⇒ stop in scfcv, after completion of all loops

• = −7⇒ stop in vtorho, after the first rho is obtained

• = −8⇒ stop in vtowfk, after the first k–point is treated

• = −9⇒ stop in cgwf, after the first wf is optimized

• = −10⇒ stop in getghc, after the Hamiltonian is applied once

This debugging feature is not yet activated in the RF routines. Note that fftalg offers another
option for debugging.

4.3.34 prtwf

Mnemonics: PRinT the WaveFunction
Characteristic:
Variable type: integer parameter
Default is 1.

If set ≥ 1, provide output of wavefunction and eigenvalue file, as described in section 6.7 of
the main abinis help file.

For a standard ground-state calculation, the name of the wavefunction file will be the root
output name, followed by WFK. If nqpt=1, the root name will be followed by WFQ. For response-
function calculations, the root name will be followed by 1WFx, where x is the number of the
perturbation. The dataset information will be added as well, if relevant.

No wavefunction output is provided by prtwf=0.

117



4.4. GEOMETRY BUILDER + SYMMETRY RELATED VARIABLES, VARGEO

4.3.35 prt1dm

Mnemonics: PRinT 1-DiMensional potential and density
Characteristic:
Variable type: integer parameter
Default is 0.

If set ≥ 1, provide one-dimensional projection of potential and density, for each of the three
axis. This corresponds to averaging the potential or the density on bi-dimensional slices of the
FFT grid.

4.4 Geometry builder + symmetry related variables, VAR-
GEO

4.4.1 brvltt

Mnemonics: BRaVais LaTTice type
Characteristic: SYMMETRIZER
Variable type: integer parameter
Default is 0.

Set the type of Bravais lattice, needed only if spgroup 6= 0. In this case, the cell defined by
acell and rprim or angdeg should be the CONVENTIONAL cell.

If brvltt=0, the code will assign brvltt from the space group information spgroup, and produce
the symmetry operations for the conventional unit cell. If the conventional cell is not primitive,
the user should set chkprim=0.

If brvltt = −1, the code will assign brvltt from the space group information, then reduce the
unit cell to a primitive unit cell. The echo of acell and rprim might thus differ from those derived
directly from the input variables. Also, the input variable xred will refer to the CONVENTIONAL
unit cell, but its echo will refer to the preprocessed PRIMITIVE unit cell. There is of course no
problem with xangst and xcart, as they are independent of the unit cell.

The echo of brvltt in the output file will be one of the following Bravais lattices:

• 1 = Primitive with no associated translations

• 2 = Inner centered with (a/2 + b/2 + c/2) associated translation

• 3 = Face centered with (a/2 + b/2; b/2 + c/2; c/2 + a/2) associated translations

• 4 = C - centered with (a/2 + b/2) associated translation

• 5 = A - centered with (b/2 + c/2) associated translation

• 6 = B - centered with (c/2 + a/2) associated translation

• 7 = Rhombohedral lattice.

The user might also input directly these values, although they might not be consistent with
spgroup.

The space groups 146, 148, 155, 160, 161, 166, 167, when used with spgaxor=1 (hexagonal
axes) will have brvltt=7 and two associated translations: (2/3, 1/3, 1/3) and (1/3, 2/3, 2/3).

For more details see the space group help file.

118



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.4.2 genafm

Mnemonics: GENerator of the translation for Anti-FerroMagnetic space group
Characteristic: SYMMETRISER
Variable type: real genafm(3)
Default 3*0.

This input variable might be used to define a Shubnikov type IV magnetic space group (anti-
ferromagnetic space group). The user is advised to consult “The mathematical theory of symmetry
in solids, Representation theory for point groups and space groups, 1972, C.J. Bradley and A.P.
Cracknell, Clarendon Press, Oxford.”

A Shubnikov type IV magnetic space group might be defined by its Fedorov space group (set
of spatial symmetries, that do not change the magnatisation), and one translation associated with
a change of magnetisation. genafm is precisely this translation, in reduced coordinates (like xred)

Thus, one way to specify a Shubnikov IV magnetic space group, is to define both spgroup and
genafm. Alternatively, one might define spgroup and spgroupma, or define by hand the set of
symmetries, using symrel, tnons and symafm.

4.4.3 natrd

Mnemonics: Number of AToms ReaD
Characteristic: GEOMETRY BUILDER, SYMMETRISER
Variable type: integer parameter
Default is natom.

Gives the number of atoms to be read from the input file, in the case the geometry builder or
the symmetriser is used. In this case, natrd is also used to dimension the array typat, and the
arrays xred, xangst and xcart.

Must take into account the vacancies (see vacnum and vaclst).
Despite possible vacancies, cannot be bigger than natom.

4.4.4 nobj

Mnemonics: Number of OBJects
Characteristic: GEOMETRY BUILDER, NO INTERNAL
Variable type: integer parameter
Default is 0 (no use of the geometry builder).

Gives the number of ‘objects’ to be used by the geometry builder in order to find the full set
of atoms. At present, only one or two objects can be defined, identified as objects ‘a’ and ‘b’.

Related variables for object ‘a’ are: objan, objaat, objarf, objatr, objaro, objaax. Related
variables for object ‘b’ are: objbn, objbat, objbrf, objbtr, objbro, objbax.

More detailed explanation: when the geometry builder is used (i.e. when nobj==1 or nobj==2),
the code will be given a primitive set of atoms, from which it will have to deduce the full set of
atoms.

An object will be specified by the number of atoms it includes (objan or objbn), and the list
of these atoms (objaat or objbat).

Examples of physical realisation of an object can be a molecule, or a group of atom to be
repeated, or a part of a molecule to be rotated. The geometry builder can indeed repeat these
objects (objarf or objbrf), rotate them (objaro or objbro) with respect to an axis (objaax or
objbax), and translate them (objatr or objbtr). After having generated a geometry thanks to
rotation, translation and repetition of objects, it is possible to remove some atoms, in order to
create vacancies (vacnum and vaclst). The number of atoms in the primitive set, those that will be
read from the input file, is specified by the variable natrd. It will be always smaller than the final

119



4.4. GEOMETRY BUILDER + SYMMETRY RELATED VARIABLES, VARGEO

number of atoms, given by the variable natom. The code checks whether the primitive number of
atoms plus those obtained by the repetition operation is coherent with the variable natom, taking
into account possible vacancies.

You should look at the other variables for more information. Go to objan, for example.
Not present in the dtset array (no internal).

4.4.5 objaat, objbat

Mnemonics: OBJect A: list of AToms, OBJect B: list of AToms
Characteristic: GEOMETRY BUILDER, NO INTERNAL
Variable type: integer arrays objaat(objan) and objbat(objbn)

Gives the list of atoms in either object a or object b. This list is specified by giving, for each
atom, its index in the list of coordinates (xred, xangst or xcart), that also corresponds to a type
of atom (given by the array type). These objects can be thought as molecules, or groups of atoms,
or parts of molecules, to be repeated, rotated and translated to generate the full set of atoms.

Look at objarf and objbrf for further explanations. objaat MUST be provided if nobj==1.
objaat and objbat MUST be provided if nobj==2.

Not present in the dtset array (no internal).

4.4.6 objaax, objbax

Mnemonics: OBJect A: AXis, OBJect B: AXis
Characteristic: GEOMETRY BUILDER, NO INTERNAL, LENGTH
Variable type: real arrays objaax(6) and objbax(6)

Gives, for each object, the cartesian coordinates of two points (first point: objaax(1:3) or
objbax(1:3), second point: objaax(4:6) or objbax(4:6)).

By default, given in bohr atomic units (1 bohr=0.5291772083 Å), although Angstrom can be
specified, if preferred, since these variables have the ‘LENGTH’ characteristics.

The two points define an axis of rotation of the corresponding object.
Note that the rotation of the object is done BEFORE the object is translated.
The sign of the rotation angle is positive if the object is to be rotated clockwise when looking

to it along the axis, from point 1 (coordinates 1:3) toward point 2 (coordinates 4:6).
objaat MUST be provided if nobj==1 and one component of objaro does not vanish.
objaat and objbat MUST be provided if nobj==2 and one component of objbro does not

vanish.
Not present in the dtset array (no internal).

4.4.7 objan, objbn

Mnemonics: OBJect A: Number of atoms, OBJect B: Number of atoms
Characteristic: GEOMETRY BUILDER, NO INTERNAL
Variable type: integer parameters

Gives the number of atoms in either object a or object b. The list of atoms is given by the
variables objaat and objbat.

objan MUST be provided if nobj==1.
objan and objbn MUST be provided if nobj==2.
Not present in the dtset array (no internal).

120



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.4.8 objarf, objbrf

Mnemonics: OBJect A: Repetition Factors, OBJect B: Repetition Factors
Characteristic: GEOMETRY BUILDER, NO INTERNAL
Variable type: integer arrays objarf(3) and objbrf(3)
Default is 1 1 1.

Gives three repetition factors of the objects a or b.
This gives the opportunity to generate a three-dimensional set of repeated objects, although a

simple one-dimensional repetition will be easily obtained through the specification of
nrep 1 1 where nrep is the 1D repetition factor.
The initial rotation and translation of the object, as well as the increment of rotation or

translation from one object to the next are specified by the variables objaro and objatr, for object
a, and objbro and objbtr, for object b.

Note that the geometry builder will generate the full set of atoms from the primitive set
of atoms using the following order: it will process each atom in the primitive list one by one,
determine whether it belongs to either object a or object b, and then repeat it taking into account
the proper rotation and translation, with the fastest varying repetition factor being the first, then
the second, then the third.

In the final list of atoms, one will first find the atoms generated from atom 1 in the primitive
list, then those generated from atom 2 in the primitive list, and so on.

If the geometry builder is only used to rotate or translate an object, without repeating it,
simply use 1 1 1, which is also the Default value.

Not present in the dtset array (no internal).

4.4.9 objaro, objbro

Mnemonics: OBJect A: ROtations, OBJect B: ROtations
Characteristic: GEOMETRY BUILDER, NO INTERNAL
Variable type: real arrays objaro(4) and objbro(4)
Default is 4*0.0d0 (no rotation).

Give, for each object, the angles of rotation in degrees to be applied to the corresponding
object.

The rotation is applied before the translation, and the axis is defined by the variables objaax
and objbax. See the latter variables for the definition of the sign of the rotation.

The first component objaro(1) and objbro(1) gives the angle of rotation to be applied to the
first instance of the object. The second, third or fourth component (resp.) gives the increment
of rotation angle from one instance to the next instance, defined by the first, second or third
repetition factor (resp.). This allows to generate 3D arrays of molecules with different rotation
angles.

Not present in the dtset array (no internal).

4.4.10 objatr, objbtr

Mnemonics: OBJect A: TRanslations, OBJect B: TRanslations
Characteristic: GEOMETRY BUILDER, NO INTERNAL, LENGTH
Variable type: real arrays objatr(3,4) and objbtr(3,4)
Default is 12*0.0d0 (no translation).

Give, for each object, the vectors of translations, in cartesian coordinates, to be applied to the
corresponding object. By default, given in bohr atomic units (1 bohr=0.5291772083 Å), although
Angstrom can be specified, if preferred, since these variables have the ‘LENGTH’ characteristics.

The translation is applied after the rotation.

121



4.4. GEOMETRY BUILDER + SYMMETRY RELATED VARIABLES, VARGEO

The first vector objatr(3,1) and objbro(3,1) gives the translation to be applied to the first
instance of the object. The second, third or fourth component (resp.) gives the increment of
translation from one instance to the next instance, defined by the first, second or third repetition
factor (resp.). This allows to generate 3D arrays of molecules.

In general, when the objects are repeated, a translation vector must be given, since otherwise,
the repeated objects pack in the same region of space. As an exception, one can have a set of
molecules regularly spaced on a circle, in which case, only rotations are needed.

Not present in the dtset array (no internal).

4.4.11 ptgroupma

Mnemonics: PoinT GROUP number for the MAgnetic space group
Characteristic: SYMMETRISER, INTERNAL
Variable type: integer parameter
Default 0.

This internal variable characterizes a Shubnikov type III magnetic space group (anti-ferromagnetic
space group). The user is advised to consult “The mathematical theory of symmetry in solids,
Representation theory for point groups and space groups, 1972, C.J. Bradley and A.P. Cracknell,
Clarendon Press, Oxford.”

A Shubnikov type III magnetic space group might be defined by its Fedorov space group (set
of all spatial symmetries, irrespective of their magnetic action), and the halving space group (only
the symmetries that do not change the magnetisation).

The specification of the halving space group might be done by specifying, for each point
symmetry, the magnetic action. See Table 7.1 of the above-mentioned reference. Magnetic space
groups are numbered from 1 to 58.

4.4.12 spgaxor

Mnemonics: SPace Group: AXes ORientation
Characteristic: SYMMETRISER
Variable type: integer parameter
Default 1.

It is taken into account only when spgroup 6= 0; it allows one to define the axes orientation for
the specific space groups for which this is needed. Trigonal groups (number 146,148,155,160,161,166,167):

• 1 represents the hexagonal axes

• 2 represents the rhombohedral axes

Orthorhombic space groups: there are six possibilities corresponding to the possible axes per-
mutations

• 1 abc → abc

• 2 abc → cab

• 3 abc → bca

• 4 abc → acb

• 5 abc → bac

• 6 abc → cba

122



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Monoclinic: there are 3 or 9 possibilities depending on the space group. See the space group
help file for details. In the log/output file the notation used to describe the monoclinic groups is
for example:

15:c1, A2/a_c = C2/c

where,

• 15 represents the space group number,

• c1 the orientation as it appears on the web page,

• A is the real Bravais type lattice,

• 2/a the existent symmetry elements,

• _c marks the orientation of the two-fold axis or of the mirror plane,

• C2/c represents the parent space group.

4.4.13 spgorig

Mnemonics:SPace Group: ORIGin
Characteristic: SYMMETRISER
Variable type: integer parameter
Default 1.

Gives the choice of origin for the axes system, taken into account only when spgroup 6= 0,
It is defined according to the origin choice in the International Tables of Crystallography.
It applies only to the space groups 48, 50, 59, 70, 85, 86, 88, 125, 126, 129, 130, 133, 134, 137,

141, 142, 201, 203, 222, 224, 227, 228.
For details see the space group help file.

4.4.14 spgroup

Mnemonics: SPace GROUP number
Characteristic: SYMMETRISER
Variable type: integer parameter
Default 0.

Gives the number of the space group.
If spgroup is 0, the code assumes that all the symmetries are input through the symrel matrices

and the tnons vectors, or obtained from the symmetry finder (the default when nsym==0).
It should be between 1 and 230. This option can be used to obtain all the atoms in the unit

cell, starting from the assymetric unit cell.
The references for computing the symmetry corresponding to the space groups are:

• International Tables for Crystallography, 1983, Ed. Theo Hahn, D. Reidel Publishing Com-
pany

• The mathematical theory of symmetry in solids, Representation theory for point groups and
space groups, 1972, C. J. Bradley and A.P. Cracknell, Clarendon Press, Oxford.

For details see the space group help file.

123



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

4.4.15 spgroupma

Mnemonics: SPace GROUP number defining a MAgnetic space group
Characteristic: SYMMETRISER, NOT INTERNAL
Variable type: integer parameter
Default 0.

This input variable might be used to define a Shubnikov magnetic space group (anti-ferromagnetic
space group). The user is advised to consult “The mathematical theory of symmetry in solids,
Representation theory for point groups and space groups, 1972, C. J. Bradley and A. P. Cracknell,
Clarendon Press, Oxford.”

A Shubnikov type IV magnetic space group might be defined by its Fedorov space group (set
of spatial symmetries that do not change the magnetisation), and an additional magnetic space
group number spgroupma.

A Shubnikov type III magnetic space group might be defined by its Fedorov space group (set
of all spatial symmetries, irrespective of their magnetic action), and an additional magnetic space
group number spgroupma.

For the additional number spgroupma, we follow the definition of Table 7.4 of the above-
mentioned Bradley and Cracknell textbook.

Thus, one way to specify a Shubnikov IV magnetic space group, is to define both spgroup and
spgroupma.

For example, the group P2_1/c’ has spgroup=14 and spgroupma=78.
Alternatively, for Shubnikov IV magnetic groups, one might define spgroup and genafm. For

both the type III and IV, one might define by hand the set of symmetries, using symrel, tnons
and symafm

4.4.16 vaclst

Mnemonics: VACancies LiST
Characteristic: GEOMETRY BUILDER, NOT INTERNAL
Variable type: integer array vaclst(vacnum)
No Default.

Gives the identification number(s) of atoms to be subtracted from the set of atoms that are
obtained after having rotated, translated and repeated the objects.

Useful to created vacancies.

4.4.17 vacnum

Mnemonics: VACancies NUMber
Characteristic: GEOMETRY BUILDER
Variable type: integer parameter
Default value is 0.

Gives the number of atoms to be subtracted from the list of atoms after the rotations, trans-
lations and repetitions have been done. The list of these atoms is contained in vaclst.

4.5 Ground-state calculation variables, VARGS

4.5.1 algalch

Mnemonics: ALGorithm for generating ALCHemical pseudopotentials
Characteristic:
Variable type: integer array algalch(ntypalch)

124



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Default is 1 for all indices

Used for the generation of alchemical pseudopotentials, that is, when ntypalch is non-zero.
Give the algorithm to be used to generate the ntypalch alchemical potentials from the different

npspalch pseudopotentials dedicated to this use.
Presently, algalch can only have the value 1, that is:

• the local potentials are mixed, thanks to the mixalch mixing coefficients

• the form factors of the non-local projectors are all preserved, and all considered to generate
the alchemical potential

• the scalar coefficients of the non-local projectors are multiplied by the proportion of the
corresponding type of atom that is present in mixalch

• the characteristic radius for the core charge is a linear combination of the characteristic radii
of the core charges, build with the mixalch mixing coefficients

• the core charge function f(r/rc) is a linear combination of the core charge functions, build
with the mixalch mixing coefficients

Later, other algorithms for the mixing might be included.

4.5.2 bdberry

Mnemonics: BanD limits for BERRY phase
Characteristic:
Variable type: integer array bdberry(4)
Default is 4*0.

Used for non-zero values of berryopt.
Give the lower band and the upper band of the set of bands for which the Berry phase must be

computed. Irrelevant if nberry is not positive. When nsppol is 1 (no spin-polarisation), only the
two first numbers, giving the lower and highest bands, are significant. Their occupation number
is assumed to be 2. When nsppol is 2 (spin-polarized calculation), the two first numbers give
the lowest and highest bands for spin up, and the third and fourth numbers give the lowest and
highest bands for spin down. Their occupation number is assumed to be 1.

Presently, bdband MUST be initialized by the user in case of Berry phase calculation: the
above-mentioned default will cause an early exit.

4.5.3 berryopt

Mnemonics: BERRY phase options
Characteristic:
Variable type: integer berryopt
Default is 0

• 0 ⇒ no computation of expressions relying on a Berry phase (default)

• 1 ⇒ the computation of Berry phases is activated (berryphase routine)

• 2 ⇒ the computation of derivatives with respect to the wavevector, thanks to the Berry
phase finite-difference formula, is activated (uderiv routine)

• 3 ⇒ same as option 1 and 2 together

• 4 ⇒ finite electric field calculation

125



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

• −1⇒ alternative computation of Berry phases (berryphase new routine)

• −2 ⇒ alternative computation of derivatives with respect to the wavevector, thanks to the
Berry phase finite-difference formula (berryphase new routine)

• −3⇒ same as option −1 and −2 together

The other related input variables are:

• in case of berryopt=1,2, or 3: bdberry and kberry; also, nberry must be larger than 0;

• in case of berryopt = −1, −2, or −3: the variable rfdir must be used to specify the primitive
vector along which the projection of the polarization or the ddk will be computed. For
example if berryopt=1 and rfdir=1 0 0, the projection of the polarization along the reciprocal
lattice vector G1 is computed. In case rfdir=1 1 1, ABINIT computes the projection of P
along G1, G2 and G3 and transforms the results to cartesian coordinates;

• efield, rfdir in case of berryopt=4;

The cases berryopt = −1, −2, −3 and 4 work only if kptopt=3, nsppol=1, nspinor=1, and
occopt=1.

4.5.4 boxcenter

Mnemonics: BOX CENTER
Characteristic:
Variable type: real array boxcenter(3)
Default boxcenter(1:3) is 0.5 0.5 0.5.

Defines the center of the box, in reduced coordinates. At present, this information is only
used in the case of Time-Dependent DFT computation of the oscillator strength. One must take
boxcenter such as to be roughly the center of the cluster or molecule. The default is sensible when
the vacuum surrounding the cluster or molecule has xred 0 or 1. On the contrary, when the cluster
or molecule is close to the origin, it is better to take boxcenter=(0 0 0).

4.5.5 boxcutmin

Mnemonics: BOX CUT-off MINimum
Characteristic:
Variable type: real
Default is 2.0.

The box cut-off ratio is the ratio between the wavefunction plane wave sphere radius, and the
radius of the sphere that can be inserted in the FFT box, in reciprocal space. In order for the
density to be exact (in the case of plane wave, not PAW), this ratio should be at least two. If one
uses a smaller ratio, one will gain speed, at the expense of accuracy. In case of pure ground state
calculation (e.g. for the determination of geometries), this is sensible. However, the wavefunctions
that are obtained CANNOT be used for starting response function calculation.

4.5.6 charge

Mnemonics: CHARGE
Characteristic:
Variable type: real number
Default is 0.

126



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Used to establish charge balance between the number of electrons filling the bands and the
nominal charge associated with the atomic cores.

The code adds up the number of valence electrons provided by the pseudopotentials of each
type (call this “zval”), then add charge, to get the number of electrons per unit cell, nelect.

Then, if iscf is positive, the code adds up the band occupancies (given in array occ) for all
bands at each k–point, then multiplies by the k–point weight wtk at each k–point. Call this sum
“nelect occ” (for the number of electrons from occupation numbers). It is then required that:
nelect occ = nelect

To treat a neutral system, which is desired in nearly all cases, one must use charge=0. To
treat a system missing one electron per unit cell, set charge=+1.

4.5.7 chkexit

Mnemonics: CHecK whether the user want to EXIT
Characteristic:
Variable type: integer parameter
Default is 2 for sequential version of ABINIT, 1 for parallel version of ABINIT.

If chkexit is 1 or 2, ABINIT will check whether the user wants to interrupt the run (using the
keyword “exit” on the top of the input file or creating a file named “abinit.exit”: see the end of
section 3.2 of abinis_help).

If chkexit=0, the check is not performed at all
If chkexit=1, the check is not performed frequently (after each SCF step)
If chkexit=2, the check is performed frequently (after a few bands, at each k–point)

4.5.8 chkprim

Mnemonics: CHecK whether the cell is PRIMitive
Characteristic: SYMMETRY FINDER
Variable type: integer parameter
Default is 1.

If the symmetry finder is used (see nsym), a non-zero value of chkprim will make the code stop
if a non-primitive cell is used. If chkprim=0, a warning is issued, but the run does not stop.

If you are generating the atomic and cell geometry using spgroup, you might generate a PRIM-
ITIVE cell using brvlatt=−1.

4.5.9 cpus, cpum, cpuh

Mnemonics: CPU time limit in: Seconds, Minutes, Hours
Characteristic: NO MULTI; for cpum and cpuh: NO INTERNAL
Variable type: real parameters
Default is 0.0d0.

One of these three real parameters can be defined in the input file, to set up a CPU time
limit. When the job reaches that limit, it will try to end smoothly. However, note that this might
still take some time. If the user want a firm CPU time limit, the present parameter must be
reduced sufficiently. Intuition about the actual margin to be taken into account should come with
experience . . .

Note that only one of these three parameters can be defined in a single input file. A zero value
has no action of the job.

Internally, only cpus is used in the dtset array: adequate conversion factors are used to generate
it from cpum or cpuh.

127



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

4.5.10 diecut

Mnemonics: DIelectric matrix Energy CUToff
Characteristic: DEVELOP, ENERGY
Variable type: real parameter
Default diecut is 2.2d0 Ha.

Kinetic energy cutoff that controls the number of planewaves used to represent the dielectric
matrix: (1/2)[(2π) ∗ (Gmax)]2 = ecut for Gmax.

Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ charac-
teristics. (1 Ha=27.2113961 eV)

All planewaves inside this “basis sphere” centered at G=0 are included in the basis. This is
useful only when iprcel ≥ 21, which means that a preconditioning scheme based on the dielectric
matrix is used.

NOTE: a negative diecut will define the same dielectric basis sphere as the corresponding
positive value, but the FFT grid will be identical to the one used for the wavefunctions. The much
smaller FFT grid, used when diecut is positive, gives exactly the same results.

No meaning for RF calculations yet.

4.5.11 diegap

Mnemonics: DIelectric matrix GAP
Characteristic: DEVELOP, ENERGY
Variable type: real parameter
Default diegap is 0.1 Ha.

Gives a rough estimation of the dielectric gap between the highest energy level computed in
the run, and the set of bands not represented. Used to extrapolate dielectric matrix when iprcel
≥ 21.

Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ charac-
teristics. (1 Ha=27.2113961 eV)

No meaning for RF calculations yet.

4.5.12 dielam

Mnemonics: DIelectric matrix LAMbda
Characteristic: DEVELOP
Variable type: real parameter between 0 and 1
Default dielam is 0.5.

Gives the amount of occupied states with mean energy given by the highest level computed in
the run, included in the extrapolation of the dielectric matrix. Used when iprcel ≥ 21.

No meaning for RF calculations yet.

4.5.13 dielng

Mnemonics: model DIElectric screening LeNGth
Characteristic:
Variable type: real parameter
Default is 1.0774841d0 (bohr), for historical reasons.

Used for screening length (in bohr) of the model dielectric function, diagonal in reciprocal
space. By default, given in bohr atomic units (1 bohr=0.5291772083 Å), although Angstrom can
be specified, if preferred, since dielng has the ‘LENGTH’ characteristics.

128



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

This model dielectric function is as follows:

diel(K) =
1 + dielng2K2

(1/diemac + dielng2K2)diemix

The inverse of this model dielectric function will be applied to the residual, to give the precon-
ditioned change of potential. Right at K = 0, diel(K) is imposed to be 1.

If the preconditioning were perfect, the change of potential would lead to an exceedingly fast
solution of the self-consistency problem (two or three steps). The present model dielectric function
is excellent for rather homogeneous unit cells.

When K→0, it tends to the macroscopic dielectric constant, eventually divided by the mixing
factor diemix.

For metals, simply put diemac to a very large value (106 is OK)
The screening length dielng governs the length scale to go from the macroscopic regime to the

microscopic regime, where it is known that the dielectric function should tend to 1. It is on the
order of 1 bohr for metals with medium density of states at the Fermi level, like Molybdenum,
and for Silicon. For metals with a larger DOS at the Fermi level (like Iron), the screening will be
more effective, so that dielng has to be decreased by a factor of 2-4.

This works for GS and RF calculation.

4.5.14 diemac

Mnemonics: model DIElectric MACroscopic constant
Characteristic:
Variable type: real parameter
Default is 106 (metallic damping).

A rough knowledge of the macroscopic dielectric constant diemac of the system is a useful help
to speed-up the SCF procedure: a model dielectric function, see the keyword dielng, is used for
that purpose. It is especially useful for speeding up the treatment of rather homogeneous unit
cells.

Some hint: The value of diemac should usually be bigger than 1.0d0, on physical grounds.
For metals, simply put diemac to a very large value (the default 106 is OK)
For silicon, use 12.0. A similar value is likely to work well for other semiconductors
For wider gap insulators, use 2.0 . . . 4.0
For molecules in an otherwise empty big box, try 1.5 . . . 3.0
Systems that combine a highly polarisable part and some vacuum are rather badly treated by

the present version of ABINIT. You have to experiment a bit to find the best diemac. If you let
diemac to its default value, you might even never obtain the self-consistent convergence!

For response function calculations, use the same values as for GS. The improvement in speed
can be considerable for small (but non-zero) values of the wavevector.

4.5.15 diemix

Mnemonics: model DIElectric MIXing factor
Characteristic:
Variable type: real parameter
Default is 1.0.

Gives overall factor of the preconditioned residual potential to be transferred in the SCF cycle.
It should be between 0.0 and 1.0.
If the model dielectric function were perfect, diemix should be 1.0. By contrast, if the model

dielectric function does nothing (when diemac=1.0d0 or dielng is larger than the size of the cell),
diemix can be used to damp the amplifying factor inherent to the SCF loop.

For molecules, a value on the order 0.5 or 0.33 is rather usual.

129



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

When iscf=3 or iscf=5, diemix is only important at the few first iterations when anharmonic
effects are important, since these schemes compute their own mixing factor for self-consistency.

4.5.16 dosdeltae

Mnemonics: DOS Delta in Energy
Characteristic: ENERGY
Variable type: real parameter
Default is 0.0.

Defines the linear grid resolution (energy increment) to be used for the computation of the
Density-Of-States, when prtdos is non-zero.

If dosdeltae is set to zero (the default value), the actual increment is 0.001 Ha if prtdos=1, and
the much smaller value 0.00005 Ha if prtdos=2. This different default value arises because the
prtdos=1 case, based on a smearing technique, gives a quite smooth DOS, while the DOS from
the tetrahedron method, prtdos=2, is rapidly varying.

4.5.17 efield

Mnemonics: Electric FIELD
Characteristic:
Variable type: real array efield(3)
Default is 3*0.0.

In case berryopt=4, a finite electric field calculation is performed. The value of this electric
field, and its direction is determined by efield. It must be given in atomic units (1 a.u. of electric
field= 514220624373.482 V/m, see note below), in cartesian coordinates.

References for the calculation under electric field (based on multi k–point Berry phase):

• Nunes and Vanderbilt, PRL 73, 712 (1994): real-space version of the finite-field Hamiltonian;

• Nunes and Gonze, PRB 63, 155197 (2001): reciprocal-space version of the finite-field Hamil-
tonian (the one presently implemented), and extensive theoretical analysis

• Souza, Iniguez and Vanderbilt, PRL 89, 117602 (2003): implementation of the finite-field
Hamiltonian (reciprocal-space version)

See also Umari, Pasquarello, PRL 90, 027401 (2003).
The atomic unit of electric field strength is: eCb/(4πε0a2

0), where eCb is the electronic charge
in Coulomb (1.602176462e-19), ε0 is the electric constant (8.854187817d-12 F/m), and a0 is the
Bohr radius in meter (0.5291772083e-10).

4.5.18 enunit

Mnemonics: ENergy UNITs
Characteristic:
Variable type: integer parameter
Default is 0 (eigenvalues in hartree and phonon frequencies in Hartree and cm-1).

Governs the units to be used for output of eigenvalues (and eventual phonon frequencies)

• 0 ⇒ print eigenvalues in hartree;

• 1 ⇒ print eigenvalues in eV;

• 2 ⇒ print eigenvalues in both hartree and eV.

130



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

If phonon frequencies are to computed:

• 0⇒ phonon frequencies in Hartree and cm-1;

• 1⇒ phonon frequencies in eV and THz;

• 2⇒ phonon frequencies in hartree, eV, cm-1, Thz and Kelvin.

4.5.19 fband

Mnemonics: Factor for the number of BANDs
Characteristic: NO INTERNAL
Variable type: real parameter, positive or zero
Default is 0.125 in case occopt==1 (insulating case) and 0.500 for other values of occopt (metallic
case). Not used in case occopt==0 or 2.

Governs the number of bands to be used in the code in the case the parameter nband is not
defined in the input file (which means that occopt is not equal to 0 or 2).

In case fband is 0.0d0, the code computes from the pseudopotential files and the geometry data
contained in the input file, the number of electrons present in the system. Then, it computes the
minimum number of bands that can accomodate them, and use that value for nband.

In case fband differs from zero, other bands will be added, just larger than fband times the
number of atoms. This parameter is not echoed in the top of the main output file, but only the
parameter nband that it allowed to compute. It is also not present in the dtset array (no internal).

The default values are chosen such as to give naturally some conduction bands. This improves
the robustness of the code, since this allows to identify lack of convergence coming from (near-
)degeneracies at the Fermi level. In the metallic case, the number of bands generated might be
too small if the smearing factor is large. The occupation numbers of the higher bands should be
small enough such as to neglect higher bands. It is difficult to automate this, so a fixed default
value has been chosen.

4.5.20 fixmom

Mnemonics: FIX the magnetic MOMent
Characteristic:
Variable type: real parameter
Default is −99.99

This input variable is active only in the nsppol=2 case. If fixmom is not the “magic” value of
−99.99, the magnetic moment of the system will be fixed to the value of fixmom. Otherwise, the
magnetic moment will be determined self-consistently, by having the same spin up and spin down
Fermi energy.

Note: for the time being, only the spin down Fermi energy is written out in the main output
file. In the fixed magnetic moment case, it differs from the spin up Fermi energy.

4.5.21 iatsph

Mnemonics: Index for the ATomic SPHeres of the atom-projected density-of-states
Characteristic:
Variable type: integer array iatsph(1:natsph)
Default is 1, 2, . . . natsph

This input variable is active only in the prtdos=3 case.
It gives the number of the natsph atoms around which the sphere for atom-projected density-

of-states will be build, in the prtdos=3 case. The radius of these spheres is given by ratsph.

131



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

4.5.22 iprcel

Mnemonics: Integer for PReConditioning of ELectron response
Characteristic:
Variable type: integer parameter
Default is 0.

Used when iscf>0, to define the SCF preconditioning scheme. Potential-based preconditioning
schemes for the SCF loop (electronic part) are STILL UNDER DEVELOPMENT. The present
parameter (electronic part) describe the way the change of potential is derived from the residual.

The possible values of iprcel correspond to:

• 0 ⇒ model dielectric function described by diemac, dielng and diemix.

• larger or equal to 21 ⇒ will compute the dielectric matrix according to diecut, dielam,
diegap.

• Between 21 and 29 ⇒ for the first few steps uses the same as option 0 then compute RPA
dielectric function, and use it as such.

• Between 31 and 39 ⇒ for the first few steps uses the same as option 0 then compute RPA
dielectric function, and use it, with the mixing factor diemix.

• Between 41 and 49 ⇒ compute the RPA dielectric matrix at the first step, and recompute
it at a later step, and take into account the mixing factor diemix.

• Between 51 and 59 ⇒ same as between 41 and 49, but compute the RPA dielectric matrix
by another mean

• Between 61 and 69 ⇒ same as between 41 and 49, but compute the electronic dielectric
matrix instead of the RPA one.

The step at which the dielectric matrix is computed or recomputed is determined by mod-
ulo(iprcel,10).

For non-homogeneous cells, relatively large, iprcel=45 will likely give a large improvement over
iprcel=0.

For nsppol=2 with metallic occopt, only iprcel=0 is allowed.
No meaning for RF calculations yet.

4.5.23 kberry

Mnemonics: K wavevectors for BERRY phase computation
Characteristic:
Variable type: integer array kberry(3,nberry)
Default is an array of 0

Used for non-zero values of berryopt.
This array defines, for each Berry phase calculation (the number of such calculations is defined

by nberry), the difference of wavevector between k–points for which the overlap matrix must
be computed. The polarisation vector will be projected on the direction of that wavevector,
and the result of the computation will be the magnitude of this projection. Doing more than
one wavevector, with different independent direction, allows to find the full polarisation vector.
However, note that converged results need oriented grids, denser along the difference wavevector
than usual Monkhorst-Pack grids.

The difference of wavevector is computed in the coordinate system defined by the k–points grid
(see ngkpt and kptrlatt), so that the values of kberry are integers. Of course, such a k–point grid
must exist, and all the corresponding wavefunctions must be available, so that the computation is

132



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

allowed only when kptopt is equal to 3. In order to save computing time, it is suggested to make a
preliminary calculation of the wavefunctions on the irreducible part of the grid, with kptopt equal
to 1, and then use these converged wavefunctions in the entire Brillouin zone, by reading them to
initialize the kptopt=3 computation.

4.5.24 kptbounds

Mnemonics: K PoinTs BOUNDarieS
Characteristic: NOT INTERNAL
Variable type: real array kptbounds(3,abs(kptopt)+1)
No Default

It is used to generate the circuit to be followed by the band structure, when kptopt is negative
(it is not read if kptopt is zero or positive).

There are abs(kptopt) segments to be defined, each of which wich start from the end point of
the preceeding one. Thus, the number of points to be input is abs(kptopt)+1. They form a circuit
starting at kptbounds(1:3,1)/kptnrm and ending at kptbounds(1:3,abs(kptopt)+1)/kptnrm. The
number of divisions of each segment is defined by ndivk.

4.5.25 kptrlatt

Mnemonics: K - PoinTs grid: Real space LATTice
Characteristic:
Variable type: integer array kptrlatt(3,3)
No default.

This input variable is used only when kptopt is positive. It partially defines the k–point grid.
The other piece of information is contained in shiftk. kptrlatt cannot be used together with ngkpt.

The values kptrlatt(1:3,1), kptrlatt(1:3,2), kptrlatt(1:3,3) are the coordinates of three vectors
in real space, expressed in the rprim coordinate system (reduced coordinates). They defines a
super-lattice in real space. The k–point lattice is the reciprocal of this super-lattice, eventually
shifted (see shiftk).

If neither ngkpt nor kptrlatt are defined, ABINIT will automatically generate a set of k–point
grids, and select the best combination of kptrlatt and shiftk that allows to reach a sufficient value
of kptrlen. See this latter variable for a complete description of this procedure.

4.5.26 kptrlen

Mnemonics: K - PoinTs grid: Real space LENgth
Characteristic:
Variable type: real parameter
Default 20.0d0.

This input variable is used only when kptopt is positive and non-zero.
Preliminary explanation: The k–point lattice defined by ngkpt or kptrlatt is used to perform

integrations of periodic quantities in the Brillouin Zone, like the density or the kinetic energy. One
can relate the error made by replacing the continuous integral by a sum over k–point lattice to the
Fourier transform of the periodic quantity. Erroneous contributions will appear only for the vectors
in real space that belong to the reciprocal of the k–point lattice, except the origin. Moreover, the
expected size of these contributions usually decreases exponentially with the distance. So, the
length of the smallest of these real space vectors is a measure of the accuracy of the k–point grid.

When either ngkpt or kptrlatt is defined, kptrlen is not used as an input variable, but the
length of the smallest vector will be placed in this variable, and echoed in the output file.

On the other hand, when neither ngkpt nor kptrlatt are defined, ABINIT will automatically
generate a large set of possible k–point grids, and select among this set, the grids that give a

133



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

length of smallest vector LARGER than kptrlen, and among these grids, the one that, when used
with kptopt=1, reduces to the smallest number of k–points. Note that this procedure can be
time-consuming. It is worth to do it once for a given unit cell and set of symmetries, but not use
this procedure by default. The best is then to set prtkpt=1, in order to get a detailed analysis of
the set of grids.

If some layer of vacuum is detected in the unit cell (see the input variable vacuum), the
computation of kptrlen will ignore the dimension related to the direction perpendicular to the
vacuum layer, and generate a bi-dimensional k–point grid. If the system is confined in a tube, a
one-dimensional k–point grid will be generated. For a cluster, this procedure will only generate
the Gamma point.

4.5.27 mixalch

Mnemonics: MIXing coefficients for ALCHemical potentials
Characteristic:
Variable type: integer array mixalch(npspalch,ntypalch)
Default is 0.d0 (will not accepted!)

Used for the generation of alchemical pseudoatoms, that is, when ntypalch is non-zero.
This array gives, for each type of alchemical pseudatom (there are ntypalch such pseudoatoms),

the mixing coefficients of the basic npspalch pseudopotentials for alchemical use. For each type of
alchemical pseudoatom, the sum of the mixing coefficients must equal 1.

The actual use of the mixing coefficients is defined by the input variable algalch.
Example 1. Suppose that we want to describe Ba(0.25) Sr(0.75) Ti O3. The input variables

related to the construction of the alchemical Ba(0.25) Sr(0.75) potential will be:

npsp 4 ! 4 pseudopotentials should be read.
znucl 8 40 56 38 ! The nuclear charges. Note that the two

! atoms whose pseudopotentials are to be mixed
! are mentioned at the end of the series.

ntypat 3 ! There will be three types of atoms.
ntypalch 1 ! One pseudoatom will be alchemical.

! Hence, there will be ntyppure=2 pure pseudoatoms,
! with znucl 8 (O) and 40 (Ti), corresponding to
! the two first pseudopotentials. Out of the
! four pseudopotentials, npspalch=2 are left
! for alchemical purposes, with znucl 56 (Ba)
! and 38 (Sr).

mixalch 0.25 0.75 ! For that unique pseudoatom to be
! generated, here are the mixing coeeficients,
! to be used to combine the Ba and Sr pseudopotentials.

Example 2. More complicated, and illustrate some minor drawback of the design of input
variables. Suppose that one wants to generate Al(0.25) Ga(0.75) As(0.10)Sb(0.90). The input
variables will be:

npsp 4 ! 4 pseudopotentials should be read
znucl 13 31 33 51 ! The atomic numbers. All pseudopotentials

! will be used for some alchemical purpose
ntypat 2 ! There will be two types of atoms.
ntypalch 2 ! None of the atoms will be ‘‘pure’’.

! Hence, there will be npspalch=4 pseudopotentials
! to be used for alchemical purposes.

mixalch 0.25 0.75 0.0 0.0 ! This array is a (4,2) array, arranged in the
0.0 0.0 0.1 0.9 ! usual Fortran order.

134



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Minor drawback: one should not forget to fill mixalch with the needed zero’s, in this later case.

4.5.28 natsph

Mnemonics: Number of ATomic SPHeres for the atom-projected density-of-states
Characteristic:
Variable type: integer parameter
Default is natom

This input variable is active only in the prtdos=3 case.
It gives the number of atoms around which the sphere for atom-projected density-of-states will

be build, in the prtdos=3 case. The indices of these atoms is given by iatsph. The radius of these
spheres is given by ratsph.

4.5.29 nbdbuf

Mnemonics: Number of BanDs for the BUFfer
Characteristic:
Variable type: integer parameter
Default 0. However, the default is changed to 2 in some cases, see later.

nbdbuf gives the number of bands, the highest in energy, that, among the nband bands, are to
be considered as part of a buffer. This concept is useful in two situations: in non-self-consistent
calculations, for the determination of the convergence tolerance; for response functions of metals,
to avoid instabilities.

In non-self-consistent GS calculations (iscf < 0), the highest levels might be difficult to con-
verge, if they are degenerate with another level, that does not belong to the set of bands treated.

Then, it might take extremely long to reach tolwfr, although the other bands are already
extremely well-converged, and the energy of the highest bands (whose residual are not yet good
enough), is also rather well converged.

In response to this problem, for non-zero nbdbuf, the largest residual (residm), to be later com-
pared with tolwfr, will be computed only in the set of non-buffer bands (this modification applies
for non-self-consistent as well as self-consistent calculation, for GS as well as RF calculations).

For a GS calculation, with iscf<0, supposing nbdbuf is not initialized in the input file, then
ABINIT will overcome the default nbdbuf value, and automatically set nbdbuf to 2.

In metallic RF calculations, in the conjugate gradient optimisation of first-order wavefunctions,
there is an instability situation when the q wavevector of the perturbation brings the eigenenergy
of the highest treated band at some k–point higher than the lowest untreated eigenenergy at some
k+q point. If one accept a buffer of frozen states, this instability can be made to disappear. Frozen
states receive automatically a residual value of -0.1d0. For a RF calculation, with 3 ≤ occopt ≤ 7,
supposing nbdbuf is not initialized in the input file, then ABINIT will overcome the default nbdbuf
value, and automatically set nbdbuf to 2. This value might be too low in some cases.

Also, the number of active bands, in all cases, is imposed to be at least 1, irrespective of the
value of nbdbuf.

4.5.30 nberry

Mnemonics: Number of BERRY phase computations
Characteristic:
Variable type: integer nberry
Default is 1

Used for non-zero values of berryopt.

135



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

Gives the number of Berry phase computations of polarisation, or finite-difference estima-
tions of the derivative of wavefunctions with respect to the wavevector, each of which might be
characterized by a different change of wavevector kberry.

When equal to 0, no Berry phase calculation of polarisation is performed. The maximal value
of nberry is 20.

Note that the computation of the polarisation for a set of bands having different occupation
numbers is meaningless (although in the case of spin-polarized calculations, the spin up bands
might have an identical occupation number, that might differ from the identical occupation number
of spin down bands). Although meaningless, ABINIT will perform such computation, if required
by the user. The input variable bdberry governs the set of bands for which a Berry phase is
computed.

The computation of the Berry phase is not yet implemented for spinor wavefunctions (nspinor=2).
Moreover, it is not yet implemented in the parallel version of ABINIT.

4.5.31 ndivk

Mnemonics: Number of DIVisions of K lines
Characteristic: NOT INTERNAL
Variable type: integer array ndivk(abs(kptopt))
No default.

Gives the number of divisions of each of the segments of the band structure, whose path is
determined by kptopt and kptbounds. This is only needed when kptopt is negative. In this case,
the absolute value of kptopt is the number of such segments.

For example, suppose that the number of segment is just one (kptopt = −1), a value ndivk=4
will lead to the computation of points with relative coordinates 0.0, 0.25, 0.5, 0.75 and 1.0, along
the segment in consideration.

Now, suppose that there are two segments (kptopt=−2), with ndivk(1)=4 and ndivk(2)=2,
the computation of the eigenvalues will be done at 7 points, 5 belonging to the first segment, with
relative coordinates 0.0, 0.25, 0.5, 0.75 and 1.0, the last one being also the starting point of the
next segment, for which two other points must be computed, with relative coordinates 0.5 and
1.0.

It is easy to compute disconnected circuits (non-chained segments), by separating the circuits
with the value ndivk=1 for the intermediate segment connecting the end of one circuit with the
beginning of the next one (in which case no intermediate point is computed along this segment).

4.5.32 ngfft

Mnemonics: Number of Grid points for Fast Fourier Transform
Characteristic:
Variable type: integer array ngfft(3)
Default is 0 0 0 (so, automatic selection of optimal values)

Gives the size of fast fourier transform (fft) grid in three dimensions. Each number must be
composed of the factors 2, 3, and 5 to be consistent with the radices available in our fft. If no
ngfft is provided or if ngfft is set to 0 0 0, the code will automatically provide an optimal set of
ngfft values, based on acell, rprim and ecut. This is the recommended procedure, of course.

The total number of FFT points is the product: ngfft(1)× ngfft(2)× ngfft(3) = nfft.
When ngfft is made smaller than recommended values, the code runs faster and the equations

in effect are approximated by a low pass fourier filter. The code reports to standard output (unit
06) a parameter “boxcut” which is the smallest ratio of the fft box side to the G vector basis sphere
diameter. When boxcut is less than 2 the fourier filter approximation is being used. When boxcut
gets less than about 1.5 the approximation may be too severe for realistic results and should be
tested against larger values of ngfft. When boxcut is larger than 2, ngfft could be reduced without

136



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

loss of accuracy. In this case, the small variations that are observed are solely due to the xc
quadrature, that may be handled with intxc=1 to even reduce this effect.

Internally, ngfft is an array of size 18. The present components are stored in ngfft(1:3), while

• ngfft(4:6) contains slightly different (larger) values, modified for efficiency of the FFT

• ngfft(7) is fftalg

• ngfft(8) is fftcache

• ngfft(9) is set to 0 if the parallelization of the FFT is not activated, while it is set to 1 if it
is activated.

• ngfft(10) is the number of processors of the FFT group

• ngfft(11) is the index of the processor in the group of processors

• ngfft(12) is n2proc, the number of x-z planes, in reciprocal space, treated by the processor

• ngfft(13) is n3proc, the number of x-y planes, in real space, treated by the processor

• ngfft(14) is mpi comm fft, the handle on the MPI communicator in charge of the FFT
parallelisation

• ngfft(15:18) are not yet used

The number of points stored by this processor in real space is n1*n2*n3proc, while in reciprocal
space, it is n1*n2proc*n3.

4.5.33 nline

Mnemonics: Number of LINE minimisations
Characteristic:
Variable type: integer parameter
Default is 4.

Gives maximum number of line minimizations allowed in preconditioned conjugate gradient
minimization for each band. The Default, 4, is fine.

Special cases, with degeneracies or near-degeneracies of levels at the Fermi energy may require
a larger value of nline (5 or 6?) Line minimizations will be stopped anyway when improvement
gets small. With the input variable nnsclo, governs the convergence of the wavefunctions for fixed
potential.

Note that nline=0 can be used to diagonalize the Hamiltonian matrix in the subspace spanned
by the input wavefunctions.

4.5.34 npsp

Mnemonics: Number PSeudoPotentials
Characteristic: NO MULTI
Variable type: integer parameter
Default is ntypat

Usually, the number of pseudopotentials to be read is equal to the number of type of atoms.
However, in the case an alchemical mixing of pseudopotential is to be used, often the number of
pseudopotentials to be read will not equal the number of types of atoms.

Alchemical pseudopotentials will be present when ntypalch is non-zero. See ntypalch to under-
stand how to use alchemical potentials in ABINIT. The input variables ntypalch, algalch,mixalch)
are active, and generate alchemical potentials from the available pseudopotentials. Also, the inner
variables ntyppure,npspalch) becomes active. See these input variables, especially mixalch, to
understand how to use alchemical potentials in ABINIT.

137



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

4.5.35 npspalch

Mnemonics: Number of PSeudoPotentials that are “ALCHemical”
Characteristic: Inner
Variable type: integer parameter, non-negative

npspalch = npsp− ntyppure.

4.5.36 nqpt

Mnemonics: Number of Q - POINTs
Characteristic:
Variable type: integer parameter
Default is 0.

Determines whether one q–point must be read (See the variables qpt and qptnrm).
Can be either 0 or 1.
If 1 and used in ground-state calculation, a global shift of all the k–points is applied, to give

calculation at k + q. In this case, the output wavefunction will be appended by WFQ instead
of WFK (see the section 4 of abinis_help) Also, if 1 and a RF calculation is done, defines the
wavevector of the perturbation.

4.5.37 nspden

Mnemonics: Number of SPin-DENsity components
Characteristic: DEVELOP
Variable type: integer parameter
The Default is the value of nsppol.

If nspden=1, no spin-magnetisation: the density matrix is diagonal, with same values spin-up
and spin-down (compatible with nsppol=1 only, for both nspinor=1 or 2)

If nspden=2, scalar magnetization (the axis is arbitrarily fixed in the z direction): the density
matrix is diagonal, with different values for spin-up and spin-down (compatible with nspinor=1,
either with nsppol=2 -general collinear magnetisation- or nsppol=1 -antiferromagnetism)

If nspden=4, vector magnetization: the density matrix is full, with allowed x, y and z mag-
netisation (useful only with nspinor=2 and nsppol=1, either because there is spin-orbit without
time-reversal symmetry - and thus spontaneous magnetization, or with spin-orbit, if one allows for
spontaneous non-collinear magnetism). Not yet available for forces, stresses, response functions.

The default (nspden = nsppol) does not suit the case of vector magnetization.

4.5.38 nspinor

Mnemonics: Number of SPINORial components of the wavefunctions
Characteristic: DEVELOP
Variable type: integer parameter
The Default is 1.

If nspinor=1, usual case: scalar wavefunction (compatible with (nsppol=1, nspden=1) as well
as (nsppol=2, nspden=2))

If nspinor=2, the wavefunction is a spinor (compatible with nsppol=1, with nspden=1 or 4,
but not with nsppol=2)

When nspinor is 2, the values of istwfk are automatically set to 1. Also, the number of bands,
for each k–point, should be even.

138



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.5.39 ntypalch

Mnemonics: Number of TYPe of atoms that are “ALCHemical”
Characteristic:
Variable type: integer parameter
The default is 0

Used for the generation of alchemical pseudopotentials: when ntypalch is non-zero, alchemical
mixing will be used.

Among the ntypat types of atoms, the last ntypalch will be “alchemical” pseudoatoms, while
only the first ntyppure will be uniquely associated with a pseudopotential (the ntyppure first of
these, actually). The ntypalch types of alchemical pseudoatoms are to be made from the remaining
npspalch pseudopotentials.

In this case, the input variables algalch,mixalch are active, and generate alchemical potentials
from the available pseudopotentials. See these input variables, especially mixalch, to understand
how to use alchemical potentials in ABINIT.

4.5.40 ntyppure

Mnemonics: Number of TYPe of atoms that are “PURe”
Characteristic: Inner
Variable type: integer parameter, non-negative

ntyppure = ntypat− ntypalch.

4.5.41 occ

Mnemonics: OCCupation numbers
Characteristic: EVOLVING
Variable type: real array occ(nband)
Default: occ is set to 0’s.

Gives occupation numbers for all bands in the problem. Needed if occopt==0 or occopt==2.
Ignored otherwise. Also ignored when iscf = −2.

Typical band occupancy is either 2 or 0, but can be 1 for half-occupied band or other choices
in special circumstances.

If occopt is not 2, then the occupancies must be the same for each k–point.
If occopt=2, then the band occupancies must be provided explicitly for each band, EACH

k–POINT, and EACH SPIN-POLARIZATION, in an array which runs over all bands, k–points,
and spin-polarizations.

The order of entries in the array would correspond to all bands at the first k–point (spin up),
then all bands at the second k–point (spin up), etc, then all k–points spin down.

The total number of array elements which must be provided is (nband(1)+nband(2)+ . . . +
nband(nkpt)) * nsppol.

The occupation numbers evolve only for metallic occupations, that is, occopt ≥ 3.

4.5.42 optdriver

Mnemonics: OPTions for the DRIVER
Characteristic:
Variable type: integer parameter
The Default is optdriver=0

For each dataset, choose the task to be done, at the level of the “driver” routine.
The choice is between:

• optdriver=0: ground-state calculation (GS), routine “gstate”

139



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

• optdriver=1: response-function calculation (RF), routine “respfn”

• optdriver=2: susceptibility calculation (SUS), routine “suscep”

• optdriver=3: susceptibility and dielectric matrix calculation (CHI), routine “screening” (see
the input variables ecutwfn, ecuteps, plasfrq, getkss, as well as nbandkss and nband)

• optdriver=4: self-energy calculation (SIG), routine “sigma”

• optdriver=5: non-linear response functions, using the 2n+1 theorem, routine “nonlinear”

If one of rfphon, rfelfd, or rfstrs is non-zero, while optdriver is not defined in the input file,
ABINIT will set optdriver to 1 automatically. These input variables (rfphon, rfelfd, and rfstrs)
must be zero if optdriver is not set to 1.

4.5.43 so typat

Mnemonics: Spin-Orbit: TYPe of each pseudo-ATom

4.5.44 pspso (obsolete)

Mnemonics: PSeudoPotential: treatment of Spin-Orbit interaction
Characteristic:
Variable type: integer array so typat(ntypat)
Default is ntypat*1

For each type of atom (each pseudopotential), specify the spin-orbit interaction.

• If 1: no spin-orbit interaction, even if nspinor=2

• If 2: treat spin-orbit in the HGH form (not allowed for all pseudopotentials)

• If 3: treat spin-orbit in the HFN form (not allowed for all pseudopotentials)

Also, so typat=0 default to 1, 2, or 3 according to the data contained in the pseudopotential
file (1= there is no spin-orbit information in the psp file; 2= the spin-orbit information is of the
HGH form; 3= the spin-orbit information is of the HFN form )

4.5.45 qpt

Mnemonics: Q PoinT
Characteristic:
Variable type: real array of 3 elements
Default wavevector is 0 0 0.

Define a q vector.
See qptnrm for extra normalization.
In ground-state calculation, if nqpt is 1, the vector qptn(1:3)= qpt(1:3)/qptnrm is added to

each renormalized k–point kpt(1:3)/kptnrm to generate the normalized, shifted, set of k–points
kptns(1:3,1:nkpt).

In response-function calculations, qptn(1:3)= qpt(1:3)/qptnrm is the wavevector of the phonon-
type calculation.

For insulators, there is no restriction on the q-points to be used for the perturbations. By
contrast, for metals, for the time being, it is adviced to take q–points for which the k and k + q
grids are the same (when the periodicity in reciprocal space is taken into account).

Tests remains to be done to see whether other q–points might be allowed (perhaps with some
modification of the code).

140



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.5.46 qptnrm

Mnemonics: Q PoinTs NoRMalization
Characteristic:
Variable type: real parameter
Default is 1.0

Provides re-normalization of qpt. Must be positive, non-zero. The actual q vector (renormal-
ized) is qptn(1:3)= qpt(1:3)/qptnrm.

4.5.47 ratsph

Mnemonics: Radius of the ATomic SPHere
Characteristic:
Variable type: real parameter
Default is 2.0 Bohr

Active only in the prtdos=3 case, for the time being. Provides the radius of the spheres around
the natsph atoms of indices iatsph, in which the local DOS and its angular-momentum projections
will be analysed.

Note that, as presently implemented, the SAME radius is used for all the atoms. So, one might
have to perform different calculations to obtain the set of relevant DOS, each corresponding to
one atom type, for each of which a different radius might be used.

NOTE: The choice of this radius is quite arbitrary. In a plane-wave basis set, there is no
natural definition of an atomic sphere. However, it might be wise to use the following well-
defined and physically motivated procedure (in version 4.2, this procedure is NOT implemented,
unfortunately): from the Bader analysis, one can define the radius of the sphere that contains
the same charge as the Bader volume. This “Equivalent Bader charge atomic radius” might then
be used to perform the present analysis. See the AIM (Bader) help file for more explanations.
Another physically motivated choice would be to rely on another charge partitioning, like the
Hirshfeld one (see the cut3d utility). The advantage of using charge partitioning schemes comes
from the fact that the sum of atomic DOS, for all angular momenta and atoms, integrated on the
energy range of the occupied states, gives back the total charge. If this is not an issue, one could
rely on the half of the nearest-neighbour distances, or any scheme that allows to define an atomic
radius. Note that the choice of this radius is however critical for the balance between the s, p and
d components. Indeed, the integrated charge within a given radius, behave as a different power
of the radius, for the different channels s, p, d. At the limit of very small radii, the s component
dominates the charge contained in the sphere . . .

4.5.48 spinat

Mnemonics: SPIN for AToms
Characteristic:
Variable type: real array spinat(3,natom) or spinat(3,natrd) if the symmetriser is used
Default is 0.0d0.

Gives the initial electronic spin-magnetisation for each atom, in unit of h-bar/2.
Note that if nspden=2, the z-component must be given for each atom, in triplets (0 0 z-

component).
For example, the electron of an hydrogen atom can be spin up (0 0 1.0) or spin down (0 0

–1.0).
This value is only used to create the first exchange and correlation potential, and is not used

anymore afterwards.
It is not checked against the initial occupation numbers occ for each spin channel.

141



4.5. GROUND-STATE CALCULATION VARIABLES, VARGS

It is meant to give an easy way to break the spin symmetry, and to allow to find stable local
spin fluctuations, for example: antiferromagnetism, or the spontaneous spatial spin separation of
elongated H2 molecule.

If the geometry builder is used, spinat will be related to the preprocessed set of atoms, generated
by the geometry builder. The user must thus foresee the effect of this geometry builder (see objarf).

If the geometry builder is not used, and the symmetries are not specified by the user (nsym=0),
spinat will be used, if present, to determine the anti-ferromagnetic characteristics of the symmetry
operations, see symafm

If the symmetries are specified, and the irreducible set of atoms is specified, the anti-ferromagnetic
characteristics of the symmetry operations symafm will be used to generate spinat for all the non-
irreducible atoms.

4.5.49 stmbias

Mnemonics: Scanning Tunneling Microscopy BIAS voltage
Characteristic: ENERGY
Variable type: real parameter
Default is 0.00

Gives, in Hartree, the bias of the STM tip, with respect to the sample, in order to generate
the STM density map.

Used with positive iscf, occopt=7 (metallic, gaussian), nstep=1, and positive prtstm, this value
is used to generate a charge density map from electrons close to the Fermi energy, in a (positive
or negative) energy range. Positive stmbias will lead to the inclusion of occupied (valence) states
only, while negative stmbias will lead to the inclusion of unoccupied (conduction) states only.

Can be specified in Ha (the default), Ry, eV or Kelvin, since stmbias has the ‘ENERGY’
characteristics. 0.001 Ha = 27.2113961 meV = 315.773 Kelvin. With occopt=7, one has also to
specify an independent broadening tsmear.

4.5.50 symafm

Mnemonics: SYMmetries, Anti-FerroMagnetic characteristics
Characteristic:
Variable type: integer array symafm(nsym)
Default is nsym*1.

In case the material is magnetic (well, this is only interesting in the case of antiferromagnetism),
additional symmetries might appear, that change the sign of the magnetisation. They have been
introduced by Shubnikov (1951). They can be used by ABINIT to decrease the CPU time, by
using them to decrease the number of k–points.

symafm should be set to +1 for all the usual symmetry operations, that do not change the sign
of the magnetisation, while it should be set to −1 for the magnetisation-changing symmetries.

If the symmetry operations are not specified by the user in the input file, that is, if nsym=0,
then ABINIT will use the values of spinat to determine the content of symafm.

4.5.51 timopt

Mnemonics: TIMing OPTion
Characteristic: NO MULTI, DEVELOP
Variable type: integer parameter
Default is 1 for sequential code, 2 for parallel code.

This input variable allows to modulate the use of the timing routines.

142



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• If 0 ⇒ as soon as possible, suppresses all calls to timing routines

• If 1 ⇒ usual timing behaviour, with short analysis, appropriate for sequential execution

• If 2 ⇒ close to timopt=1, except that the analysis routine does not time the timer, appro-
priate for parallel execution.

• If −1⇒ a full analysis of timings is delivered

• If −2⇒ a full analysis of timings is delivered, except timing the timer

4.5.52 tphysel

Mnemonics: Temperature (PHYSical) of the ELectrons
Characteristic: ENERGY
Variable type: real parameter
Default is 0.00

Gives, in Hartree, the physical temperature of the system, in case occopt=4, 5, 6, or 7.
Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut has the ‘ENERGY’ char-

acteristics. 0.001 Ha = 27.2113961 meV = 315.773 Kelvin. One has to specify an independent
broadening tsmear. The combination of the two parameters tphysel and tsmear is described in a
paper by M. Verstraete and X. Gonze, Phys. Rev. B (2002). Note that the signification of the
entropy is modified with respect to the usual entropy. The choice has been made to use tsmear as
a prefactor of the entropy, to define the entropy contribution to the free energy.

4.5.53 tsmear

Mnemonics: Temperature of SMEARing
Characteristic: ENERGY
Variable type: real parameter
Default is 0.04

Gives the broadening of occupation numbers occ, in the metallic cases (occopt=3, 4, 5, 6 and
7). Can be specified in Ha (the default), eV, Ry, or Kelvin, since tsmear has the ‘ENERGY’
characteristics. 0.001 Ha = 27.2113961 meV = 315.773 Kelvin

Default is 0.04 Ha. This should be OK for a free-electron metal like Al. For d-band metals,
use 0.01 Ha.

Always check the convergence of the calculation with respect to this parameter, and simulta-
neously, with respect to the sampling of k–points (see nkpt)

If occopt=3, tsmear is the physical temperature, as the broadening is based on Fermi-Dirac
statistics. However, if occopt=4, 5, 6, or 7, the broadening is not based on Fermi-Dirac statistics,
and tsmear is only a convergence parameter. It is still possible to define a physical temperature,
thanks to the input variable tphysel. See the paper by M. Verstraete and X. Gonze, Phys. Rev.
B (2002).

4.5.54 vacuum

Mnemonics: VACUUM identification
Characteristic: NOT INTERNAL
Variable type: integer array vacuum(3)
No Default

Establishes the presence (if 1) or absence (if 0) of a vacuum layer, along the three possible
directions normal to the primitive axes.

143



4.6. GW VARIABLES, VARGW

This information might be used to generate k–point grids, if kptopt=0 and neither ngkpt nor
kptrlatt are defined (see explanations with the input variable prtkpt). It will allow to select a
zero-, one-, two- or three-dimensional grid of k–points. The coordinate of the k–points along
vacuum directions is automatically set to zero.

If vacuum is not defined, the input variable vacwidth will be used to determine automatically
whether the distance between atoms is sufficient to have the presence or absence of vacuum.

4.5.55 vacwidth

Mnemonics: VACuum WIDTH
Characteristic: LENGTH
Variable type: real parameter
Default value is 10.0

Give a minimum “projected” distance between atoms to be found in order to declare that there
is some vacuum present for each of the three directions. By default, given in bohr atomic units (1
Bohr=0.5291772083 Å), although Angstrom can be specified, if preferred, since vacwidth has the
‘LENGTH’ characteristics.

The precise requirement is that a slab of width vacwidth, delimited by two planes of constant
reduced coordinates in the investigated direction, must be empty of atoms.

4.6 GW variables, VARGW

4.6.1 bdgw

Mnemonics: BanDs for GW calculation
Characteristic: GW
Variable type: integer bdgw(2,nkptgw)
Default is all 0’s

For each k–point with number igwpt in the range (1:nkptgw), bdgw(1,igwpt) is the number of
the lowest band for which the GW computation must be done, and bdgw(2,igwpt) is the number
of the highest band for which the GW computation must be done.

4.6.2 ecuteps

Mnemonics: Energy CUT-off for EPSilon (the dielectric matrix)
Characteristic: GW
Variable type: real
Default: 0.0

Only relevant if optdriver=3, that is, GW calculations.
ecuteps determines the cut-off energy of the planewave set used to represent the independent-

particle susceptibility χ(0)
KS , the dielectric matrix ε, and its inverse. It is not worth to take ecuteps

bigger than four times ecutwfn, this latter limit corresponding to the highest Fourier components
of a wavefunction convoluted with itself. Usually, even twice the value of ecutwfn might overkill.
In any case, a convergence study is worth.

This set of planewaves can also be determined by the other input variables npweps and nsheps,
but these are much less convenient to use for general systems, than the selection criterion based
on a cut-off energy.

144



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.6.3 ecutsigx

Mnemonics: Energy CUT-off for MAT??
Characteristic: GW
Variable type: real
Default: 0.0

Only relevant if optdriver=4, that is, GW calculations. This input variable was named “ecut-
mat” prior to v4.3.

ecutsigx determines the cut-off energy of the planewave set used to generate the exchange part
of the self-energy operator.

This set of planewaves can also be determined by the other input variables npwsigx and nshsigx,
but these are much less convenient to use for general systems, than the selection criterion based
on the cut-off energy.

4.6.4 ecutwfn

Mnemonics: Energy CUT-off for WaveFunctions
Characteristic: GW
Variable type: real
Default: 0.0

Only relevant if optdriver=3 or 4, that is, GW calculations.
ecutwfn determines the cut-off energy of the planewave set used to represent the wavefunctions

in the formula that generates the independent-particle susceptibility χ
(0)
KS (for optdriver=3), or

the self-energy (for optdriver=4).
Usually, ecutwfn is smaller than ecut, so that the wavefunctions are filtered, and some com-

ponents are ignored. As a side effect, the wavefunctions are no more normalized, and also, no
more orthogonal. Also, the set of plane waves can be much smaller for optdriver=3, than for
optdriver=4, although a convergence study is needed to choose correctly both values.

This set of planewaves can also be determined by the other input variables npwwfn and nshwfn,
but these are much less convenient to use for general systems, than the selection criterion based
on the cut-off energy.

4.6.5 gwcalctyp

Mnemonics: GW CALCulation TYPe
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=3 or 4, that is, GW calculations.
gwcalctyp governs the choice between plasmon-pole approximation or full integration, or . . .

(to be described), for development purposes.

4.6.6 kptgw

Mnemonics: K-PoinTs for GW calculations
Characteristic: GW
Variable type: real kptgw(3,nkptgw)
Default: all 0.0’s

For each k–point with number igwpt in the range (1:nkptgw), kptgw(1,igwpt) is the reduced
coordinate of the k–point.

145



4.6. GW VARIABLES, VARGW

At present, not all k–points are possible. Only those corresponding to the k–point grid defined
with the same repetition parameters (kptrlatt, or ngkpt) than the GS one, but WITHOUT any
shift, are allowed.

4.6.7 nbandkss

Mnemonics: Number of BaNDs STOred
Characteristic:
Variable type: integer parameter
Default is 0

This input variable (also called “nbndsto” prior to v4.3) is used for the preparation of a GW
calculation: it will be used in a GS run (where optdriver=0) to generate a KSS file. In this run,
nbandkss should be non-zero. Then, this GS run should be followed with a run where optdriver=3.

• If nbandkss=0, no KSS file is created

• If nbandkss=−1, all the available eigenstates (energies and eigenfunctions) are stored in a
abo KSS file at the end of the ground state calculation. The number of states is forced to
be

• the same for all k–points: it will be the minimum of the number of plane waves over all
k–points.

• If nbandkss is greater than 0, abinit stores (about) nbandkss eigenstates in a abo KSS file.
This number of states is forced to be the same for all k–points.

See npwkss for the selection of the number of the planewave components of the eigenstates to
be stored.

Very important: for the time being, istwfk must be 1 for all the k–points.
For more details about the format of the abo KSS file, see the routine outkss.f.

4.6.8 npwkss

Mnemonics: Number of planewave COMponents STOred
Characteristic:
Variable type: integer parameter
Default is 0

This input variable (was called “ncomsto” prior to v4.3) is used for the preparation of a GW
calculation: the GS run (where optdriver=1 and nbandkss 6= 0) should be followed with a run
where optdriver=3. Also, if nbandkss=0, no use of npwkss.

npwkss defines the number of planewave components of the Kohn-Sham states to build the
Hamiltonian, in the routine outkss.f, and so, the size of the matrix, the size of eigenvectors, and the
number of available states, to be stored in the abo KSS file. If it is set to 0, then, the planewave
basis set defined by the usual Ground State input variable ecut is used to generate the superset
of all planewaves used for all k–points. Note that this (large) planewave basis is the same for all
k–points.

Very important: for the time being, istwfk must be 1 for all the k–points.

4.6.9 nkptgw

Mnemonics: Number of GW PoinTs
Characteristic: GW
Variable type: integer

146



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Default: 0

Only relevant if optdriver=4, that is, GW calculations. This input variable was called “ngwpt”
in versions before v4.3.

nkptgw gives the number of k–points for which the GW calculation must be done. It is used
to dimension kptgw

4.6.10 nomegasrd

Mnemonics: Number of OMEGA to evaluate the Sigma Real axis Derivative
Characteristic: GW
Variable type: integer
Default: 9

Only relevant if optdriver=4, that is, GW calculations.
The number of frequencies omega where sigma is calculation around the KS energy on the real

axis. From these values, the derivative of Sigma with respect to omega and calculated at the KS
energy is evaluated.

4.6.11 npweps

Mnemonics: Number of PlaneWaves for EPSilon (the dielectric matrix)
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=3, that is, GW calculations.
npweps determines the size of the planewave set used to represent the independent-particle

susceptibility χ(0)
KS , the dielectric matrix ε and its inverse.

See ecuteps (preferred over npweps) for more information.

4.6.12 npwsigx

Mnemonics: Number of PlaneWaves for SIGma eXchange
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=4, that is, GW calculations. This input variable wxas previously
called “npwmat”.

npwsigx determines the cut-off energy of the planewave set used to generate the exchange part
of the self-energy operator.

See ecutsigx (preferred over npwsigx) for more information.

4.6.13 npwwfn

Mnemonics: Number of PlaneWaves for WaveFunctioNs
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=3 or 4, that is, GW calculations.
npwwfn determines the size of the planewave set used to represent the wavefunctions in the

formula that generates the independent-particle susceptibility χ(0)
KS .

147



4.6. GW VARIABLES, VARGW

See ecutwfn (preferred over nshwfn) for more information.

4.6.14 nsheps

Mnemonics: Number of SHells for EPSilon (the dielectric matrix)
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=3, that is, GW calculations.
nsheps determines the size of the planewave set used to represent the independent-particle

susceptibility χ(0)
KS , the dielectric matrix ε and its inverse.

See ecuteps (preferred over nsheps) for more information.

4.6.15 nshsigx

Mnemonics: Number of SHells for MAT??
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=4, that is, GW calculations.This input variable was named “nshma”
prior to v4.3.

nshsigx determines the cut-off energy of the planewave set used to generate the exchange part
of the self-energy operator.

See ecutsigx (preferred over nshsigx) for more information.

4.6.16 nshwfn

Mnemonics: Number of SHells for WaveFunctioNs
Characteristic: GW
Variable type: integer
Default: 0

Only relevant if optdriver=3 or 4, that is, GW calculations.
nshwfn determines the number of shells of the planewave set used to represent the wavefunctions

in the formula that generates the independent-particle susceptibility χ(0)
KS .

See ecutwfn (preferred over nshwfn) for more information.

4.6.17 omegasrdmax

Mnemonics: OMEGA to evaluate the Sigma Real axis Derivative: MAXimal value
Characteristic: GW
Variable type: real
Default: 1.0 eV

Only relevant if GW calculations.
The maximum distance from the KS energy where to evaluate Sigma. Sigma is evaluated at

[KS energy - maxomegasrd, KS energy + maxomegasrd] sampled nomegasrd times.

4.6.18 ppmfrq

Mnemonics: Plasmon Pole Model FReQuency
Characteristic: ENERGY, GW

148



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Variable type: real
Default: 0.0 Ha

(This input variable was named plasfrq prior to v4.3). Only relevant if optdriver=3, that is,
GW calculations.

The present GW implementation is based on a plasmon-pole model. In this plasmon-pole
model, the screening must be available at zero frequency, as well as at another frequency, imaginary,
on the order of the plasmon frequency (the peak in the EELS spectrum). This information is used
to derive the behaviour of the dielectric matrix for all the frequencies (complex). ppmfrq defines the
imaginary frequency at which the dielectric matrix is evaluated, in addition to the zero frequency.
If the plasmon-pole approximation is good, then, the choice of ppmfrq should have no influence
on the final result. One should check whether this is the case. In general, the plasmon frequencies
of bulk solids are on the order of 0.5 Hartree.

4.6.19 soenergy

Mnemonics: Scissor Operator ENERGY
Characteristic: GW, ENERGY
Variable type: real
Default: 0.0

Only relevant if optdriver=3, that is, GW calculations of screening. The Scissor operator
energy to be added to unoccupied levels for the screening calculation. In some cases, it mimics a
second iteration self-consistent GW calculation.

4.6.20 zcut

Mnemonics: Z-CUT
Characteristic: GW, ENERGY
Variable type: real
Default: 0.1 eV = 3.67493260× 10−3 Ha

Only relevant if optdriver=4, that is, GW calculations. It is meant to avoid some divergencies
that might occur due to the numerical treatment of integrable poles along the integration path. If
the denominator becomes smaller than zcut, a small imaginary part (depending on zcut) is added,
in order to avoid the divergence.

Ideally, one should make a convergence study of zcut decreasing for increasing number of
k–points.

4.7 Internal variables, VARINT

4.7.1 kptns

Mnemonics: K-PoinTs re-Normalized and Shifted
Characteristic: INTERNAL
Variable type: real array kptns(3,nkpt)

If nqpt=0, or if one is doing a reponse calculation, this internal variable is derived from kpt
and kptnrm: kptns(1:3,:)= kpt(1:3,:)/ kptnrm, so that it is kpt renormalized by kptnrm.

If nqpt=1 and one is not doing a ground-state calculation, this internal variable is derived from
kpt,kptnrm and qptn kptns(1:3,:)= kpt(1:3,:)/ kptnrm+ qptn(1:3), so that it is kpt renormalized
by kptnrm, then shifted by qptn(1:3).

149



4.7. INTERNAL VARIABLES, VARINT

4.7.2 mband

Mnemonics: Maximum number of BANDs
Characteristic: INTERNAL
Variable type: integer

This internal variable deduces from nband(1:nkpt*nsppol) the maximum number of bands,
over all k–points and spin-polarisation.

4.7.3 mgfft

Mnemonics: Maximum of nGFFT
Characteristic: INTERNAL
Variable type: integer

This internal variable gives the maximum of ngfft(1:3).

4.7.4 mpw

Mnemonics: Maximum number of Plane Waves
Characteristic: INTERNAL
Variable type: integer

This internal variable gives the maximum of the number of plane waves over all k–points. It
is computed from ecut, and the description of the cell, provided by acell, rprim, and/or angdeg.

4.7.5 nelect

Mnemonics: Number of ELECTrons
Characteristic: INTERNAL
Variable type: real number

This internal variable gives the number of electrons per unit cell, as computed from the sum
of the valence electrons related to each atom (given by the pseudopotential), that is called “zval”
and the input variable charge: nelect=zval-charge.

4.7.6 nfft

Mnemonics: Number of FFT points
Characteristic: INTERNAL
Variable type: integer

If the space parallelisation is not used, this internal variable gives the number of Fast Fourier
Transform points, in the grid generated by ngfft(1:3). It is simply the product of the three
components of ngfft.

If the space parallelisation is used, then it becomes the number of Fast Fourier Transform
points attributed to this particular processor. It is no more the above-mentioned simple product,
but a number usually close to this product divided by the number of processors on which the space
is shared.

4.7.7 qptn

Mnemonics: Q-PoinT re-Normalized
Characteristic: INTERNAL

150



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Variable type: real array qptn(3)

Used if nqpt=1. This internal variable is derived from qpt and qptnrm: qptn(1:3)= qpt(1:3)/
qptnrm.

4.7.8 usepaw

Mnemonics: USE Projector Augmented Waves method
Characteristic: INTERNAL
Variable type: integer parameter
Value is set by the pseudopotential files: either PAW or norm-conserving.

If the user wants to use the Projector Augmented Method, then usepaw must be 1. This
variable is determined by the pseudopotentials files. Indeed, special PAW pseudo-projector files
must be used (these are the equivalent of the pseudopotential files for the pseudopotential method).
Such files are NOT yet available for the entire periodic table. Also, forces and stresses are not
yet computed in the PAW method as implemented in ABINITv4.1. Other limitations are present
as well, precluding the use of PAW for real production work. These limitations will be waived as
time passes.

Related variables: pawecutdg, pawlcutd, pawmqgrdg, pawnphi, pawntheta.

4.8 Parallelisation variables, VARPAR

4.8.1 localrdwf

Mnemonics: LOCAL ReaD WaveFunctions
Characteristic: DEVELOP, PARALLEL
Variable type: integer
Default is 1.

This input variable is used only in abinip. If localrdwf=1, the input wavefunction disk file is
read locally by each processor, while if localrdwf=0, only one processor reads it, and BCAST it
to other processors.

The option localrdwf=0 is NOT allowed when mkmem==0 (or, for RF, when mkqmem==0,
or mk1mem==0), that is, when the wavefunctions are stored on disk. This is still to be coded . . .

In the case of a parallel computer with a unique file system, both options are as convenient for
the user. However, if the I/O are slow compared to communications between processors, (e.g. for
CRAY T3E machines), localrdwf=0 should be much more efficient; if you really need temporary
disk storage, switch to localrdwf=1 ).

In the case of a cluster of nodes, with a different file system for each machine, the input
wavefunction file must be available on all nodes if localrdwf=1, while it is needed only for the
master node if localrdwf=0.

4.9 Projector-Augmented Wave variables, VARPAW

4.9.1 ngfftdg

Mnemonics: Number of Grid points for Fast Fourier Transform: Double Grid
Characteristic:
Variable type: integer array ngfftdg(3)
Default:

Needed only when usepaw=1.

151



4.9. PROJECTOR-AUGMENTED WAVE VARIABLES, VARPAW

To be documented.

4.9.2 pawecutdg

Mnemonics: PAW - Energy CUToff for the Double Grid
Characteristic: ENERGY
Variable type: real parameter
Default: 1.25 times ecut

Needed only when usepaw=1.
Define the energy cut-off for the fine FFT grid (that allow to transfer data from the normal,

coarse, FFT grid to the spherical grid around each atom).
pawecutdg must be larger or equal to ecut. If equal to it, then no fine grid is used. The results

are not very accurate, but the computations proceed quite fast.
The default value is sometimes a bit too low, but does not slow down the computation. The

choice made for this variable DOES have a bearing on the numerical accuracy of the results, and,
as such, should be the object of a convergence study. The convergence test might be made on the
total energy or derived quantities, like forces, but also on the two values of the “Compensation
charge inside spheres”, a quantity written in the log file.

4.9.3 pawlcutd

Mnemonics: PAW - 1+L angular momentum used to CUT the development in moments of the
Densitites
Characteristic:
Variable type: integer parameter
The default is 10

Needed only when usepaw=1.
The expansion of the densities in angular momenta is performed up to l=pawlcutd-1.
The choice made for this variable DOES have a bearing on the numerical accuracy of the

results, and, as such, should be the object of a convergence study. The convergence test might
be made on the total energy or derived quantities, like forces, but also on the two values of the
“Compensation charge inside spheres”, a quantity written in the log file.

4.9.4 pawmqgrdg

Mnemonics: PAW - Max. number of Q-space GRid points for psp for the Double Grid
Characteristic:
Variable type: integer parameter
The default is -1.

Needed only when usepaw=1.
Same use as mqgrid, but for the fine grid, instead of the coarse grid.
If set to -1, the step corresponding to mqgrid for the coarse grid (defined by the energy cut-off

ecut) is computed, and then, the same step is used for the fine grid (defined by the energy cut-off
pawecutdg).

4.9.5 pawnphi

Mnemonics: PAW - Number of PHI angles used to discretize the sphere around each atom.
Characteristic:
Variable type: integer parameter

152



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

The default is 13.

Needed only when usepaw=1.
Number of phi angles (longitude) used to discretize the data on the atomic spheres. This

discretization is completely defined by pawnphi and pawntheta.

4.9.6 pawntheta

Mnemonics: PAW - Number of THETA angles used to discretize the sphere around each atom.
Characteristic:
Variable type: integer parameter
The default is 12

Needed only when usepaw=1.
Number of theta angles (latitude) used to discretize the data on the atomic spheres. This

discretization is completely defined by pawntheta and pawnphi.

4.10 Response Function variables, VARRF

4.10.1 dsifkpt

Mnemonics: DenSiFy K-PoinTs
Characteristic:
Variable type: integer array dsifkpt(3)
Default is 1.

Can be used to density the k–point grid along the lines that are parallel to the three primitive
vectors, in reciprocal space. Should be useful for third-order derivatives that include some deriva-
tive with respect to k–points or electric field. This part is in development. For the time being,
consult ABINIT/Infos/nonlinear.ps

4.10.2 mkqmem

Mnemonics: Maximum number of K+Q - points in MEMory

4.10.3 mk1mem

Mnemonics: Maximum number of K - points for 1st order wavefunctions, kept in MEMory
Characteristic: RESPFN
Variable type: integer parameters
Default is nkpt, i.e. in-core solution.

Plays a role similar to mkmem but for different sets of wavefunctions: the ground state wave-
functions at k+q and the first-order wavefunctions. Only needed for response calculations. Internal
representation as mkmems(2) and mkmems(3).

Note (991019) that although the effective number of k–points can be reduced thanks to sym-
metry for different perturbations, mkqmem and mk1mem are presently still compared with the
input nkpt.

This should be changed later.

153



4.10. RESPONSE FUNCTION VARIABLES, VARRF

4.10.4 prepanl

Mnemonics: PREPAre Non-Linear response calculation
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

The computation of third-order derivatives from the 2n+1 theorem requires the first-order
wavefunctions and densities obtained from a linear response calculation. The standard approach
in a linear response calculation is (i) to compute only the irreductible perturbations, and (ii) to
use symmetries to reduce the number of k–points for the k–point integration.

This approach cannot be applied, presently (v4.1), if the first-order wavefunctions are to be
used to compute third-order derivatives. First, for electric fields, the code needs the derivatives
along the three directions. Still, in case of phonons, only the irreducible perturbations are required.
Second, for both electric fields and phonons, the wavefunctions must be available in half the BZ
(kptopt=2), or the full BZ (kptopt=3).

During the linear response calculation, in order to prepare a non-linear calculation, one should
put prepanl to 1 in order to force ABINIT (i) to compute the electric field perturbation along the
three directions explicitely, and (ii) to keep the full number of k–points.

4.10.5 prtbbb

Mnemonics: PRinT Band-By-Band decomposition
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

If prtbbb is 1, print the band-by-band decomposition of Born effective charges and localization
tensor, in case they are computed. See Ph. Ghosez and X. Gonze, J. Phys.: Condens. Matter 12,
9179 (2000), and M. Veithen, X. Gonze and Ph. Ghosez, to be published.

4.10.6 rfasr

Mnemonics: Response Function: Acoustic Sum Rule
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

Control the evaluation of the acoustic sum rule in effective charge calculations within a response
function calculation.

• 0 ⇒ no acoustic sum rule imposed

• 1 ⇒ acoustic sum rule imposed with extra charge evenly distributed among atoms

• 2 ⇒ acoustic sum rule imposed with extra charge given proportionally to those atoms with
the largest effective charge.

4.10.7 rfatpol

Mnemonics: Response Function: limits of ATomic POLarisations
Characteristic: RESPFN

154



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.10.8 rf1atpol

Mnemonics: non-linear Response Function, 1st mixed perturbation: limits of ATomic POLarisa-
tions
Characteristic: NON-LINEAR

4.10.9 rf2atpol

Mnemonics: non-linear Response Function, 2nd mixed perturbation: limits of ATomic POLarisa-
tions
Characteristic: NON-LINEAR

4.10.10 rf3atpol

Mnemonics: non-linear Response Function, 3rd mixed perturbation: limits of ATomic POLarisa-
tions
Characteristic: NON-LINEAR

Variable type: integer array of 2 elements
Default is 1 1

Control the range of atoms for which displacements will be considered in phonon calculations
(atomic polarisations), or in non-linear computations, using the 2n+1 theorem.

These values are only relevant to phonon response function calculations, or non-linear compu-
tations.

May take values from 1 to natom, with rfatpol(1) ≤ rfatpol(2).
The atoms to be moved will be defined by the
do-loop variable iatpol:
do iatpol=rfatpol(1),rfatpol(2)
For the calculation of a full dynamical matrix, use rfatpol(1)=1 and rfatpol(2)=natom, together

with rfdir 1 1 1. For selected elements of the dynamical matrix, use different values of rfatpol
and/or rfdir. The name ‘iatpol’ is used for the part of the internal variable ipert when it runs
from 1 to natom. The internal variable ipert can also assume values larger than natom, of electric
field or stress type (see respfn.help).

4.10.11 rfdir

Mnemonics: Response Function: DIRections
Characteristic: RESPFN

4.10.12 rf1dir

Mnemonics: non-linear Response Function, 1st mixed perturbation: DIRections
Characteristic: NON-LINEAR

4.10.13 rf2dir

Mnemonics: non-linear Response Function, 2nd mixed perturbation: DIRections
Characteristic: NON-LINEAR

155



4.10. RESPONSE FUNCTION VARIABLES, VARRF

4.10.14 rf3dir

Mnemonics: non-linear Response Function, 3rd mixed perturbation: DIRections
Characteristic: NON-LINEAR

Variable type: integer array of 3 elements
Default is 0 0 0.

Gives the directions to be considered for response function calculations, or non-linear compu-
tations.

The three elements corresponds to the three primitive vectors, either in real space (phonon
calculations), or in reciprocal space (d/dk and homogeneous electric field calculations). So, they
generate a basis for the generation of the dynamical matrix or to macroscopic didlectric tensor, of
the effective charge tensors.

If equal to 1, response functions, as defined by rfelfd, rfphon, rfdir and rfatpol, are to be
computed for the corresponding direction. If 0, this direction should not be considered (for non-
linear computations, the corresponding input variables should be used).

4.10.15 rfelfd

Mnemonics: Response Function with respect to the ELectric FielD
Characteristic: RESPFN

4.10.16 rf1elfd

Mnemonics: non-linear Response Function, 1st mixed perturbation: ELectric FielD
Characteristic: NON-LINEAR

4.10.17 rf2elfd

Mnemonics: non-linear Response Function, 2nd mixed perturbation: ELectric FielD
Characteristic: NON-LINEAR

4.10.18 rf3elfd

Mnemonics: non-linear Response Function, 3rd mixed perturbation: ELectric FielD
Characteristic: NON-LINEAR

Variable type: integer parameter
Default is 0.

Turns on electric field response function calculations (or non-linear computation, including
the electric field perturbation). Actually, such calculations requires first the non-self-consistent
calculation of derivatives with respect to k, independently of the electric field perturbation itself.

• 0 ⇒ no electric field perturbation

• 1 ⇒ full calculation, with first the derivative of ground-state wavefunction with respect to
k (d/dk calculation), by a non-self-consistent calculation, then the generation of the

• first-order response to an homogeneous electric field

• 2 ⇒ only the derivative of ground-state wavefunctions with respect to k;

156



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

• 3 ⇒ only the generation of the first-order response to the electric field, assuming that the
data on derivative of ground-state wavefunction with respect to k is available on disk.

(Note: because the tolerances to be used for derivatives or homogeneous electric field are
different, one often does the calculation of derivatives in a separate dataset, followed by calculation
of electric field response as well as phonon. The options 2 and 3 proves useful in that context;
also, in case a scissor shift is to be used, it is usually not applied for the d/dk response).

4.10.19 rfmeth

Mnemonics: Response Function METHod
Characteristic: RESPFN
Variable type: integer parameter
Default is 1.

Selects method used in response function calculations. Presently, only 1 is allowed.

4.10.20 rfphon

Mnemonics: Response Function with respect to PHONons
Characteristic: RESPFN

4.10.21 rf1phon

Mnemonics: non-linear Response Function, 1st mixed perturbation: PHONons
Characteristic: NON-LINEAR

4.10.22 rf2phon

Mnemonics: non-linear Response Function, 2nd mixed perturbation: PHONons
Characteristic: NON-LINEAR

4.10.23 rf2phon

Mnemonics: non-linear Response Function, 3rd mixed perturbation: PHONons
Characteristic: NON-LINEAR

Variable type: integer parameter
Default is 0.

It must be equal to 1 to run phonon response function calculations, or to include some phonon
perturbation in non-linear computations.

4.10.24 rfstrs

Mnemonics: Response Function with respect to STRainS
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

Used to run strain response-function calculations (e.g. needed to get elastic constants). Define,
with rfdir, the set of perturbations.

157



4.10. RESPONSE FUNCTION VARIABLES, VARRF

• 0 ⇒ no strain perturbation

• 1 ⇒ only uniaxial strain(s) (ipert=natom+3 is activated)

• 2 ⇒ only shear strain(s) (ipert=natom+4 is activated)

• 3 ⇒ both uniaxial and shear strain(s) (both ipert=natom+3 and ipert=natom+4 are acti-
vated)

See the possible restrictions on the use of strain perturbations, in the respfn_help file.

4.10.25 rfthrd

Mnemonics: Response Function of THiRD order
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

Used to control response function calculation of third order response. Not implemented.

4.10.26 rfuser

Mnemonics: Response Function, USER-defined
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

Available to the developpers, to activate the use of ipert=natom+5 and ipert=natom+6, two
sets of perturbations that the developpers can define.

• 0 ⇒ no computations for ipert=natom+5 or ipert=natom+6

• 1 ⇒ response with respect to perturbation natom+5 will be computed

• 2 ⇒ response with respect to perturbation natom+6 will be computed

• 3 ⇒ responses with respect to perturbations natom+5 and natom+6 will be computed

In order to define and use correctly the new perturbations, the developper might have to in-
clude code lines or additional routines at the level of the following routines: cgwf3.f, chkph3.f,
dyout3.f, d2sym3.f, eneou3.f, eneres3.f, gath3.f, insy3.f, loper3.f, mkcor3.f, nstdy3.f, nstwf3.f, re-
spfn.f, scfcv3.f, syper3.f, vloca3.f, vtorho3.f, vtowfk3.f, wings3.f,. In these routines, the developper
should pay a particular attention to the rfpert array, defined in the routine respfn.f, as well as to
the ipert local variable.

4.10.27 sciss

Mnemonics: SCISSor operator
Characteristic: RESPFN, ENERGY
Variable type: real parameter
Default is 0.

It is the value of the “scissors operator”, the shift of conduction band eigenvalues, used in
response function calculations. Can be specified in Ha (the default), Ry, eV or Kelvin, since ecut
has the ’ENERGY’ characteristics. (1 Ha=27.2113961 eV)

Typical use is for response to electric field (rfelfd=3), but NOT for d/dk (rfelfd=2) and phonon
responses.

158



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.10.28 td maxene

Mnemonics: Time-Dependent dft: MAXimal kohn-sham ENErgy difference
Characteristic: TDDFT
Variable type: real parameter
Default is huge.

The Matrix to be diagonalized in the Casida framework (see “Time-Dependent Density Func-
tional Response Theory of Molecular systems: Theory, Computational Methods, and Functionals”,
by M.E. Casida, in Recent Developments and Applications of Modern Density Functional Theory,
edited by J.M. Seminario (Elsevier, Amsterdam, 1996).) is a NxN matrix, where, by default, N is
the product of the number of occupied states by the number of unoccupied states.

The input variable td maxene allows to diminish N: it selects only the pairs of occupied and
unoccupied states for which the Kohn-Sham energy difference is less than td maxene.

See td mexcit for an alternative way to decrease N.

4.10.29 td mexcit

Mnemonics: Time-Dependent dft: Maximal number of EXCITations
Characteristic: TDDFT
Variable type: real parameter
Default is 0.

The Matrix to be diagonalized in the Casida framework (see “Time-Dependent Density Func-
tional Response Theory of Molecular systems: Theory, Computational Methods, and Functionals”,
by M.E. Casida, in Recent Developments and Applications of Modern Density Functional Theory,
edited by J.M. Seminario (Elsevier, Amsterdam, 1996).) is a NxN matrix, where, by default, N is
the product of the number of occupied states by the number of unoccupied states.

The input variable td mexcit allows to diminish N: it selects the first td mexcit pairs of occupied
and unoccupied states, ordered with respect to increasing Kohn-Sham energy difference. However,
when td mexcit is zero, all pairs are allowed.

See td maxene for an alternative way to decrease N.

4.11 Structure optimization variables, VARRLX

4.11.1 amu

Mnemonics: Atomic Mass Units
Characteristic:
Variable type: real array amu(ntypat)
Default is provided by a database of atomic masses.

Gives the masses in atomic mass units for each kind of atom in cell. These masses are used
in performing molecular dynamical atomic motion if ionmov=1, 6, 7 or 8. Note that one may set
all masses to 1 for certain cases in which merely structural relaxation is desired and not actual
molecular dynamics.

Using 1986 recommended values, 1 atomic mass unit = 1.6605402e-27 kg. In this unit the mass
of Carbon 12 is exactly 12.

A database of atomic masses is provided, giving default values. Note that the default database
uses mixed isotope masses (for Carbon the natural occurence of Carbon 13 is taken into account).
The values are those recommended by the commission on Atomic Weights and Isotopic Abun-
dances, Inorganic Chemistry Division, IUPAC, in Pure Appl. Chem. 60, 841 (1988). For Tc, Pm,
Po to Ac, Pa and beyond U, none of the isotopes has a half-life greater than 3.0× 1010 years, and
the values provided in the database do not come from that source. For alchemical pseudoatoms,

159



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

the masses of the constituents atoms are mixed, according to the alchemical miwing coefficients
mixalch

4.11.2 delayperm

Mnemonics: DELAY between trials to PERMUTE atoms
Characteristic:
Variable type: integer
Default is 0.

Delay (number of time steps) between trials to permute two atoms, in view of accelerated
search of minima. Still in development. See the routine moldyn.f. See also signperm. When
delayperm is zero, there is not permutation trials.

4.11.3 dilatmx

Mnemonics: DILATation: MaXimal value
Characteristic:
Variable type: real parameter
Default is 1.0.

Gives the maximal permitted scaling of the lattice parameters when the cell shape and dimen-
sion is varied (see variable optcell). It is used to define the sphere of plane waves and FFT box
coherent with the possible modifications of the cell (ionmov==2 and optcell 6= 0). For these defi-
nitions, it is equivalent to changing ecut by multiplying it by dilatmx2 (the result is an “effective
ecut”, called internally “ecut eff”, other uses of ecut being not modified when dilatmx>1.0.

Using dilatmx¡1.0 is equivalent to changing ecut in all its uses. This is allowed, although its
meaning is no longer related to a maximal expected scaling.

Setting dilatmx to a large value leads to waste of CPU time and memory. Supposing you think
that the optimized acell values might be 10% larger than your input values, use simply dilatmx
1.1.

This will already lead to an increase of the number of planewaves by a factor (1.1)3=1.331, and
a corresponding increase in CPU time and memory. It is possible to use dilatmx when optcell=0,
but a value larger than 1.0 will be a waste.

Must be 1.0 for RF calculations.

4.11.4 dtion

Mnemonics: Delta Time for IONs
Characteristic:
Variable type: real parameter
Default is 100.

Used for controlling ion time steps. If ionmov is set to 1, 6 or 7, then molecular dynamics
is used to update atomic positions in response to forces. The parameter dtion is a time step in
atomic units of time. (One atomic time unit is 2.418884e-17 seconds, which is the value of Planck’s
constant in hartree*sec.) In this case the atomic masses, in amu (given in array “amu”), are used
in Newton’s equation and the viscosity (for ionmov=1) and number of time steps are provided to
the code using input variables “vis” and “ntime”. The code actually converts from masses in amu
to masses in atomic units (in units of electron masses) but the user enters masses in amu. (The
conversion from amu to atomic units (electron masses) is 1822.88851 electron masses/amu.) A
typical good value for dtion is about 100. The user must try several values for dtion in order to
establish the stable and efficient choice for the accompanying amu, atom types and positions, and
vis (viscosity).

160



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

For quenched dynamics (ionmov=7), a larger time step might be taken, for example 200.
No meaning for RF calculations.

4.11.5 ecutsm

Mnemonics: Energy CUToff SMearing
Characteristic: ENERGY
Variable type: real parameter (in Hartree)
Default is 0.d0

This input variable is important when performing relaxation of unit cell size and shape (non-
zero optcell). Using a non-zero ecutsm, the total energy curves as a function of ecut, or acell, can
be smoothed, keeping consistency with the stress (and automatically including the Pulay stress).
The recommended value is 0.5 Ha. Actually, when optcell 6= 0, ABINIT requires ecutsm to be
larger than zero. If you want to optimize cell shape and size without smoothing the total energy
curve (a dangerous thing to do), use a very smalle ecutsm, on the order of one microHartree.

Technical information: See Bernasconi et al, J. Phys. Chem. Solids 56, 501 (1995) for a related
method.

ecutsm allows to define an effective kinetic energy for plane waves, close to, but lower than
the maximal kinetic energy ecut. For kinetic energies less than ecut-ecutsm, nothing is modified,
while between ecut-ecutsm and ecut, the kinetic energy is multiplied by: 1.0/(x2(3− 2 ∗x)) where
x = (ecut - kinetic energy)/ecutsm

Note that x2 ( 3-2*x) is 0 at x=0, with vanishing derivative, and that at x=1, it is 1, with also
vanishing derivative.

If ecutsm is zero, the unmodified kinetic energy is used.
ecutsm can be specified in Ha (the default), Ry, eV or Kelvin, since ecutsm has the ‘ENERGY’

characteristics. (1 Ha=27.2113961 eV).
A few test for Silicon (diamond structure, 2 k–points) have shown 0.5 Ha to be largely enough

for ecut between 2Ha and 6Ha, to get smooth curves. It is likely that this value is OK as soon as
ecut is larger than 4Ha.

4.11.6 friction

Mnemonics: internal FRICTION coefficient
Characteristic:
Variable type: real parameter
Default is 0.001

Gives the internal friction coefficient (atomic units) for Langevin dynamics (when ionmov=9):
fixed temperature simulations with random forces.

The equation of motion is:

MId
2RI/dt

2 = FI − frictionMIdRI/dt− Frandom I

where Frandom I is a Gaussian random force with average zero, and variance 2 frictionMIkT .
The atomic unit of friction is Hartrees*electronic mass*(atomic time units)/bohr2. See J.

Chelikowsky, J. Phys. D: Appl Phys. 33 (2000) R33.

4.11.7 getcell

Mnemonics: GET CELL parameters from . . .
Characteristic:
Variable type: integer parameter, an instance of a ‘get’ variable.
Default is 0.

161



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

This variable is typically used to chain the calculations, in the multi-dataset mode (ndtset>0),
since it describes from which dataset acell and rprim are to be taken, as input of the present
dataset. The cell parameters are EVOLVING variables, for which such a chain of calculations is
useful.

If ==0, no use of previously computed values must occur.
If it is positive, its value gives the index of the dataset from which the data are to be used as

input data. It must be the index of a dataset already computed in the SAME run.
If equal to −1, the output data of the previous dataset must be taken, which is a frequently

occuring case. However, if the first dataset is treated, −1 is equivalent to 0, since no dataset has
yet been computed in the same run.

If another negative number, it indicates the number of datasets to go backward to find the
needed data (once again, going back beyond the first dataset is equivalent to using a null get
variable).

4.11.8 getxcart

Mnemonics: GET XCART from . . .

4.11.9 getxred

Mnemonics: GET XRED from . . .

4.11.10 getvel

Mnemonics: GET VEL from . . .
Characteristic:
Variable type: integer parameters, instances of ‘get’ variables
Default is 0.

These variables are typically used to chain the calculations, in the multi-dataset mode (ndtset
> 0) since they describe from which dataset the corresponding output variables are to be taken,
as input of the present dataset. The atomic positions and velocities are EVOLVING variables, for
which such a chain of calculation is useful.

Note that the use of getxcart and getxred differs when acell and rprim are different from one
dataset to the other.

If ==0, no use of previously computed values must occur.
If it is positive, its value gives the index of the dataset from which the data are to be used as

input data. It must be the index of a dataset already computed in the SAME run.
If equal to −1, the output data of the previous dataset must be taken, which is a frequently

occuring case. However, if the first dataset is treated, −1 is equivalent to 0, since no dataset has
yet been computed in the same run.

If another negative number, it indicates the number of datasets to go backward to find the
needed data (once again, going back beyond the first dataset is equivalent to using a null get
variable).

Note: getxred and getxcart cannot be simultaneously non-zero for the same dataset. On the
other hand the use of getvel with getxred is allowed, despite the different coordinate system.

4.11.11 iatcon

Mnemonics: Indices of AToms in CONstraint equations
Characteristic: NO MULTI, NOT INTERNAL
Variable type: integer array iatcon(natcon,nconeq)

162



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Default is 0

Gives the indices of the atoms appearing in each of the nconeq independent equations con-
straining the motion of atoms during structural optimization or molecular dynamics (see nconeq,
natcon, and wtatcon).

(Note: combined with wtatcon to give internal representation of the latter - this should be
described)

4.11.12 iatfix

Mnemonics: Indices of AToms that are FIXed

4.11.13 iatfixx

Mnemonics: Indices of AToms that are FIXed along the X direction

4.11.14 iatfixy

Mnemonics: Indices of AToms that are FIXed along the Y direction

4.11.15 iatfixz

Mnemonics: Indices of AToms that are FIXed along the Z direction
Characteristic: iatfixx,iatfixy and iatfixz are NOT INTERNAL
Variable type: integer arrays of length natfix, natfixx, natfixy or natfixz
No Default (ignored unless natfix, natfixx, natfixy or natfixz > 0).

Give the index (in the range 1 to natom) of each atom which is to be held fixed for structural
optimization or molecular dynamics. The variable iatfix lists those fixed in the three directions,
while the other variables allow to fix some atoms along x, y or z directions, or a combination of
these.

WARNING: The implementation is inconsistent!! For ionmov==1, the fixing of directions
was done in cartesian coordinates, while for the other values of ionmov, it was done in reduced
coordinates. Sorry for this.

There is no harm in fixing one atom in the three directions using iatfix, then fixing it again in
other directions by mentioning it in iatfixx, iatfixy or iatfixz.

The internal representation of these input data is done by the mean of one variable iat-
fix(3,natom), defined for each direction and each atom, being 0 if the atom is not fixed along
the direction, and 1 if the atom is fixed along the direction. When some atoms are fixed along 1
or 2 directions, the use of symmetries is restricted to symmetry operations whose (3x3) matrices
symrel are diagonal.

If the geometry builder is used, iatfix will be related to the preprocessed set of atoms, generated
by the geometry builder. The user must thus foresee the effect of this geometry builder (see objarf).

4.11.16 ionmov

Mnemonics: IONic MOVEs
Characteristic:
Variable type: integer parameter
Default for ionmov is 0.

Control the displacements of ions, and eventually (see optcell) changes of cell shape and size.

163



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

• 0 ⇒ do not move ions;

• 1 ⇒ move atoms using molecular dynamics with optional viscous damping (friction linearly
proportional to velocity). The viscous damping is controlled by the parameter “vis”. If
actual undamped molecular dynamics is desired, set vis to 0. The implemented algorithm is
the generalisation of the Numerov technique (6th order), but is NOT invariant upon time-
reversal, so that the energy is not conserved. The value ionmov=6 will usually be preferred,
although the algorithm that is implemented is lower-order. opcell 6= 0 is not available

• 2⇒ conduct structural optimization using the Broyden-Fletcher-Goldfarb-Shanno minimiza-
tion (BFGS). This is much more efficient for structural optimization than viscous damping,
when there are less than let’s say 10 degrees of freedom to optimize.

• 3⇒ conduct structural optimization using the Broyden-Fletcher-Goldfarb-Shanno minimiza-
tion (BFGS), modified to take into account the total energy as well as the gradients (as in
usual BFGS). See the paper by Schlegel, J. Comp. Chem. 3, 214 (1982). Might be better
than ionmov=2 for few degrees of freedom (less than 3 or 4)

• 4 ⇒ conjugate gradient algorithm for simultaneous optimization of potential and ionic de-
grees of freedom. It can be used with iscf=2 and iscf=5 or 6 (WARNING: this is under
development, and does not work very well in many cases). optcell 6= 0 is not available.

• 5 ⇒ Simple relaxation of ionic positions according to (converged) forces. Equivalent to
ionmov=1 with zero masses, albeit the relaxation coefficient is not vis, but iprcfc. optcell 6=
0 is not available.

• 6 ⇒ Molecular dynamics using the Verlet algorithm, see Allen and Tildesley “Computer
simulation of liquids” 1987, p 81. Although partly coded, optcell 6= 0 is not available. The
only related parameter is the time step (dtion).

• 7 ⇒ Quenched Molecular dynamics using the Verlet algorithm, and stopping each atom for
which the scalar product of velocity and force is negative. Although partly coded, optcell 6=
0 is not available. The only related parameter is the time step (dtion). The goal is not to
produce a realistic dynamics, but to go as fast as possible to the minimum. For this purpose,
it is advised to set all the masses to the same value (for example, use the Carbon mass, i.e.
set amu to 12 for all type of atoms).

• 8⇒Molecular dynamics with Nose-Hoover thermostat, using the Verlet algorithm. Although
partly coded, optcell 6= 0 is not available. Related parameters: the time step (dtion), the
initial temperature (mditemp), the final temperature (mdftemp), and the thermostat mass
(noseinert).

• 9⇒ Langevin molecular dynamics. Although partly coded, optcell 6= 0 is not available.
Related parameters: the time step (dtion), the initial temperature (mditemp), the final
temperature (mdftemp), and the friction coefficient (friction).

No meaning for RF calculations.

4.11.17 mdftemp

Mnemonics: Molecular Dynamics Final Temperature
Characteristic:
Variable type: real mdftemp
Default is mdftemp=mditemp

Give the final temperature (for itime=ntime) of the Nose-Hoover thermostat (ionmov=8) and
Langevin dynamics (ionmov=9), in Kelvin. This temperature will change linearly from mditemp
at itime=1 to the final temperature mdftemp at the end of the ntime timesteps.

164



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.11.18 mditemp

Mnemonics: Molecular Dynamics Initial Temperature
Characteristic:
Variable type: real mditemp
Default is 300

Give the initial temperature (for itime=1) of the Nose-Hoover thermostat (ionmov=8) and
Langevin dynamics (ionmov=9), in Kelvin. This temperature will change linearly to reach the
temperature mdftemp at the end of the ntime timesteps.

4.11.19 mdwall

Mnemonics: Molecular Dynamics WALL location
Characteristic:
Variable type: real parameter
Default is 10000.0 Bohr (the walls are extremely far away).

Gives the location (atomic units) of walls on which the atoms will bounce back. when ion-
mov=6, 7, 8 or 9. For each cartesian direction idir=1, 2 or 3, there is a pair of walls with
coordinates xcart(idir)=-wall and xcart(idir)=rprimd(idir,idir)+wall. Supposing the particle will
cross the wall, its velocity normal to the wall is reversed, so that it bounces back.

By default, given in bohr atomic units (1 bohr=0.5291772083 Å), although Angstrom can be
specified, if preferred, since mdwall has the ’LENGTH’ characteristics.

4.11.20 natcon

Mnemonics: Number of AToms in CONstraint equations
Characteristic: NO MULTI
Variable type: integer array of length nconeq
Default is 0

Gives the number of atoms appearing in each of the nconeq independent equations constraining
the motion of atoms during structural optimization or molecular dynamics (see nconeq, iatcon,
and wtatcon).

4.11.21 natfix

Mnemonics: Number of Atoms that are FIXed

4.11.22 natfixx

Mnemonics: Number of Atoms that are FIXed along the X direction

4.11.23 natfixy

Mnemonics: Number of Atoms that are FIXed along the Y direction

4.11.24 natfixz

Mnemonics: Number of Atoms that are FIXed along the Z direction
Characteristic: NOT INTERNAL

165



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

Variable type: integer parameter
Defaults are 0 (no atoms held fixed).

Gives the number of atoms (not to exceed natom) which are to be held fixed during a structural
optimization or molecular dynamics.

When natfix > 0, natfix entries should be provided in array iatfix.
When natfixx > 0, natfixx entries should be provided in array iatfixx, and so on . . .

4.11.25 nconeq

Mnemonics: Number of CONstraint EQuations
Characteristic: NO MULTI
Variable type: integer parameter
Default is 0

Gives the number of independent equations constraining the motion of atoms during structural
optimization or molecular dynamics (see natcon, iatcon, and wtatcon).

4.11.26 noseinert

Mnemonics: NOSE INERTia factor
Characteristic:
Variable type: real noseinert
Default is 1.0d5

Give the inertia factor WT of the Nose-Hoover thermostat (when ionmov=8), in atomic units
of weight ∗ length2, that is (electron mass) ∗ (bohr)2. The equations of motion are:

MI
d2RI
dt2

= FI −
dX

dt
MI

dRI
dt

(4.3)

and

WT
d2X

dt2
=
∑
I

MI(
dRI
dt

)2 − 3NkBT (4.4)

where I represent each nucleus, MI is the mass of each nucleus (see amu), RI is the coordinate
of each nucleus (see xcart), dX/dt is a dynamical friction coefficient, and T is the temperature of
the thermostat (see mditemp and mdftemp).

4.11.27 ntime

Mnemonics: Number of TIME steps
Characteristic:
Variable type: integer parameter
Default is 5.

Gives the number of molecular dynamics time steps or Broyden structural optimization steps
to be done if ionmov=1 or 2 respectively.

Note that at the present the option ionmov=1 is initialized with four Runge-Kutta steps which
costs some overhead in the startup. By contrast, the initialisation of other ionmov values is only
one SCF call.

ntime is ignored if ionmov=0.

166



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.11.28 ntypat

Mnemonics: Number of TYPEs of atoms
Characteristic: NO MULTI
Variable type: integer parameter
Default is 1.

Gives the number of types of atoms. E.g. for a homopolar system (e.g. pure Si) ntypat is 1.
The code tries to read the same number pseudopotential files.
The first pseudopotential is assigned type number 1, and so on . . .

4.11.29 optcell

Mnemonics: OPTimize the CELL shape and dimensions
Characteristic:
Variable type: integer parameter
The Default is optcell=0

Allows to optimize the unit cell shape and dimensions, when ionmov=2 or 3. The configuration
for which the stress almost vanish is iteratively determined, by using the same algorithms as for
the nuclei positions. Will eventually modify acell and/or rprim. The ionic positions are ALWAYS
updated, according to the forces. A target stress tensor might be defined, see strtarget

• optcell=0: modify nuclear positions, since ionmov=2, but no cell shape and dimension op-
timisation.

• optcell=1: optimisation of volume only (do not modify rprim, and allow an homogeneous
dilatation of the three components of acell)

• optcell=2: full optimization of cell geometry (modify acell and rprim - normalize the vectors
of rprim to generate the acell). This is the usual mode for cell shape and volume optimization.
It takes into account the symmetry of the system, so that only the effectively relevant degrees
of freedom are optimized.

• optcell=3: constant-volume optimization of cell geometry (modify acell and rprim under
constraint - normalize the vectors of rprim to generate the acell)

• optcell=4,5 or 6: optimize acell(1), acell(2) or acell(3), respectively (only works if the two
other vectors are orthogonal to the optimized one, the latter being along its cartesian axis).

• optcell=7,8 or 9: optimize the cell geometry while keeping the first, second or third vector
unchanged (only works if the two other vectors are orthogonal to the one left unchanged,
the latter being along its cartesian axis).

NOTE that a few details require attention when performing unit cell optimisation:

• one has to get rid off the discontinuites due to discrete changes of plane wave number with
cell size, by using a suitable value of ecutsm;

• one has to allow for the possibility of a larger sphere of plane waves, by using dilatmx;

• one might have to adjust the scale of stresses to the scale of forces, by using strfact.

• if all the reduced coordinates of atoms are fixed by symmetry, one cannot use toldff to stop
the SCF cycle. (Suggestion: use toldfe with a small value, like 1.0× 10−10)

167



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

It is STRONGLY suggested first to optimize the ionic positions without cell shape and size
optimization (optcell=0), then start the cell shape and size optimization from the cell with relaxed
ionic positions.

Presently (v3.1), one cannot restart (restartxf) a calculation with a non-zero optcell value
from the (x,f) history of another run with a different non-zero optcell value. There are still a few
problems at that level.

4.11.30 restartxf

Mnemonics: RESTART from (X,F) history
Characteristic:
Variable type: integer parameter
Default is 0.

Control the restart of broyden minimisation.
Works only for ionmov=2 (Broyden) and when an input wavefunction file is specified, thanks

to the appropriate values of irdwfk or getwfk.
If positive, the code reads from the input wf file, the previous history of atomic coordinates

and corresponding forces, in order to continue the work done by the job that produced this wf
file. If optcell 6= 0, the history of acell and rprim variables is also taken into account. The code
will take into consideration the whole history (if restartxf==1), or discard the few first (x,f) pairs,
and begin only at the pair whose number corresponds to restartxf.

If zero, the Broyden minimization is done from scratch.
NOTE: the input wf file must have been produced by a run that exited cleanly. It cannot be

one of the temporary wf files that exist when a job crashed.
Presently (v3.1), one cannot restart a calculation with a non-zero optcell value from the (x,f)

history of another run with a different non-zero optcell value. There are still a few problems at
that level. Starting a non-zero optcell run from a zero optcell run should work.

4.11.31 rfasr

Mnemonics: Response Function: Acoustic Sum Rule
Characteristic: RESPFN
Variable type: integer parameter
Default is 0.

Control the evaluation of the acoustic sum rule in effective charge calculations within a response
function calculation.

• 0 ⇒ no acoustic sum rule imposed

• 1 ⇒ acoustic sum rule imposed with extra charge evenly distributed among atoms

• 2 ⇒ acoustic sum rule imposed with extra charge given proportionally to those atoms with
the largest effective charge.

4.11.32 signperm

Mnemonics: SIGN of PERMutation potential
Characteristic:
Variable type: integer
Default is 1.

In development. See the routine moldyn.f. See also delayperm.
+1 favors alternation of species
−1 favors segregation

168



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

4.11.33 strfact

Mnemonics: STRess FACTor
Characteristic:
Variable type: real parameter
Default is 100.0 (Bohr2)

The stresses multiplied by strfact will be treated like forces in the process of optimization
(ionmov=2, non-zero optcell).

For example, the stopping criterion defined by tolmxf relates to these scaled stresses.

4.11.34 strprecon

Mnemonics: STRess PRECONditioner
Characteristic:
Variable type: real parameter
Default is 1.0

This is a scaling factor to initialize the part of the Hessian related to the treatment of the
stresses (optimisation of the unit cell). In case there is an instability, decrease the default value,
e.g. set it to 0.1.

4.11.35 strtarget

Mnemonics: STRess TARGET
Characteristic:
Variable type: real array strtarget(6)
Default is 6*0.0 (Ha/Bohr**3)

The optimization of cell size and shape, as might be asked through optcell, will target the
stress tensor defined by by strtarget, or part thereof (if restricted optimizations are asked, like
fixed shape). Presently, this required target stress is not taken into account for the determination
of the symmetries. If it breaks the symmetries of the input unit cell, so that symrel disagrees with
strtarget, the result will be unreliable. Also, presently, the thermodynamical potential to be used
n this situation (the free energy) does not replace the total energy, so that, for exemple, ionmov=3
cannot be used, since this algorithm is taking into account the total energy.

The components of the stress tensor must be stored according to: (1,1)→1; (2,2)→2; (3,3)→3;
(2,3)→4; (3,1)→5; (1,2)→6. The conversion factor between Ha/Bohr3 and GPa is: 1 Ha/Bohr3

= 29421.033d0 GPa.
Not used if optcell==0.

4.11.36 tolmxf

Mnemonics: TOLerance on the MaXimal Force
Characteristic:
Variable type: real parameter
Default is 5.0d-5 hartree/bohr.

Sets a maximal absolute force tolerance (in hartree/bohr) below which BFGS structural relax-
ation iterations will stop.

Can also control tolerance on stresses, when optcell 6= 0, using the conversion factor strfact.
This tolerance applies to any particular cartesian component of any atom, excluding fixed ones.
See the parameter ionmov.

This is to be used when trying to equilibrate a structure to its lowest energy configuration
(ionmov=2).

169



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

A value of about 5.0d-5 hartree/bohr or smaller is suggested (this corresponds to about 2.5d-3
eV/Å).

No meaning for RF calculations.

4.11.37 vel

Mnemonics: VELocity
Characteristic: EVOLVING
Variable type: real array vel(3,natom)
Default is 3*natom 0’s.

Gives the starting velocities of atoms, in cartesian coordinates, in bohr/atomic time units
(atomic time units given where dtion is described).

Irrelevant unless ionmov > 0.
For ionmov=8 (Nose thermostat), if vel is not initialized, a random initial velocity giving the

right kinetic energy will be generated.
If the geometry builder is used, vel will be related to the preprocessed set of atoms, generated

by the geometry builder. The user must thus foresee the effect of this geometry builder (see
objarf).

Velocities evolve is ionmov==1.

4.11.38 vis

Mnemonics: VIScosity
Characteristic:
Variable type: real parameter
Default is 100.

Gives the viscosity (atomic units) for linear frictional damping term applied to molecular
dynamics when ionmov=1. Used for eventual relaxation of structure (however, ionmov=2 is in
general more efficient).

The equation of motion is:

MId
2RI/dt

2 = FI − visdRI/dt

The atomic unit of viscosity is hartrees*(atomic time units)/bohr2. Units are not critical as
this is a ficitious damping used to relax structures. A typical value for silicon is 400 with dtion of
350 and atomic mass 28 amu. Critical damping is most desirable and is found only by optimizing
vis for a given situation.

4.11.39 wtatcon

Mnemonics: WeighTs for AToms in CONstraint equations
Characteristic: NO MULTI
Variable type: real array wtatcon(3,natcon,nconeq)
Default is 0.

Gives the weights determining how the motion of atoms is constrained during structural opti-
mization or molecular dynamics (see nconeq, natcon, and iatcon). For each of the nconeq inde-
pendent constraint equations, wtatcon is a 3*natcon array giving weights, WI , for the x, y, and
z components of each of the atoms (labeled by I) in the list of indices iatcon. Prior to taking an
atomic step, the calculated forces, FI , are replaced by projected forces, F ′I , which satisfy the set
of constraint equations∑

mu=x,y,z;I=1,natcon

: Wmu,I ∗ F ′mu,I = 0 for each of the nconeq arrays WI .

170



CHAPTER 4. MAIN ABINIT CODE, INPUT VARIABLES: COMPLETE LIST

Different types of motion constraints can be implemented this way. For example,

nconeq 1 natcon 2 iatcon 1 2 wtatcon 0 0 +1 0 0 -1

could be used to constrain the relative height difference of two adsorbate atoms on a surface
(assuming their masses are equal), since F ′z,1 − F ′z,2 = 0 implies z1 − z2 = constant.

171



4.11. STRUCTURE OPTIMIZATION VARIABLES, VARRLX

172



Index

abinis, 56
accesswff, 95
acell, 79
algalch, 124
amu, 159
angdeg, 79

bdberry, 125
bdgw, 144
berryopt, 125
boxcenter, 126
boxcutmin, 126
brvltt, 118

ceksph, 95
charge, 126
chkexit, 127
chkprim, 127
cmlfile, 106
cpus, cpum, cpuh, 127

dedlnn, 95
delayperm, 160
densty, 96
diecut, 128
diegap, 128
dielam, 128
dielng, 128
diemac, 129
diemix, 129
dilatmx, 160
dosdeltae, 130
dsifkpt, 153
dtion, 160

ecut, 80
ecuteps, 144
ecutsigx, 145
ecutsm, 161
ecutwfn, 145
effmass, 96
efield, 130
enunit, 130
eshift, 96
exchn2n3, 96

fband, 131
fftalg, 97
fftcache, 97
fixmom, 131
freqsusin, 98
freqsuslo, 98
friction, 161

genafm, 119
get1den, 109
get1wf, 109
get1wfden, 109
getcell, 161
getddk, 109
getden, 107
getkss, 107
getocc, 108
getscr, 108
getvel, 162
getwfk, 109
getwfq, 109
getxcart, 162
getxred, 162
gwcalctyp, 145

iatcon, 162
iatfix, 163
iatfixx, 163
iatfixy, 163
iatfixz, 163
iatsph, 131
idyson, 98
ikhxc, 98
intexact, 99
intxc, 99
ionmov, 163
iprcch, 100
iprcel, 132
iprcfc, 100
ird1wf, 110
irdddk, 110
irdkss, 110
irdscr, 110
irdwfk, 110
irdwfq, 110

173



INDEX

iscf, 80
istatr, 101
istatshft, 101
istwfk, 101
ixc, 81

jdtset, 82

kberry, 132
kpt, 83
kptbounds, 133
kptgw, 145
kptnrm, 83
kptns, 149
kptopt, 83
kptrlatt, 133
kptrlen, 133
kssform, 111

ldgapp, 102
localrdwf, 151

mband, 150
mdftemp, 164
mditemp, 165
mdwall, 165
mffmem, 112
mgfft, 150
mixalch, 134
mk1mem, 153
mkmem, 112
mkqmem, 153
mpw, 150
mqgrid, 102

natcon, 165
natfix, 165
natfixx, 165
natfixy, 165
natfixz, 165
natom, 84
natrd, 119
natsph, 135
nband, 84
nbandkss, 146
nbandsus, 102
nbdblock, 102
nbdbuf, 135
nberry, 135
nconeq, 166
ndivk, 136
ndtset, 85
ndyson, 103
nelect, 150
nfft, 150

nfreqsus, 103
ngfft, 136
ngfftdg, 151
ngkpt, 85
nkpt, 85
nkptgw, 146
nline, 137
nloalg, 103
nnsclo, 104
nobj, 119
nomegasrd, 147
noseinert, 166
npsp, 137
npspalch, 138
npweps, 147
npwkss, 146
npwsigx, 147
npwwfn, 147
nqpt, 138
nsheps, 148
nshiftk, 86
nshsigx, 148
nshwfn, 148
nspden, 138
nspinor, 138
nsppol, 86
nstep, 86
nsym, 87
ntime, 166
ntypalch, 139
ntypat, 87, 167
ntyppure, 139

objaat, objbat, 120
objaax, objbax, 120
objan, objbn, 120
objarf, objbrf, 121
objaro, objbro, 121
objatr, objbtr, 121
occ, 139
occopt, 88
omegasrdmax, 148
optcell, 167
optdriver, 139
optforces, 104
ortalg, 104

pawecutdg, 152
pawlcutd, 152
pawmqgrdg, 152
pawnphi, 152
pawntheta, 153
ppmfrq, 148
prepanl, 154

174



INDEX

prt1dm, 118
prtbbb, 154
prtcml, 112
prtden, 113
prtdos, 113
prteig, 114
prtfsurf, 114
prtgeo, 114
prtkpt, 115
prtpot, 115
prtstm, 116
prtvha, 115
prtvhxc, 115
prtvol, 116
prtvxc, 115
prtwf, 117
pspso, 140
ptgroupma, 122

qprtrb, 105
qpt, 140
qptn, 150
qptnrm, 141

ratsph, 141
restartxf, 168
rf1atpol, 155
rf1dir, 155
rf1elfd, 156
rf1phon, 157
rf2atpol, 155
rf2dir, 155
rf2elfd, 156
rf2phon, 157
rf3atpol, 155
rf3dir, 156
rf3elfd, 156
rfasr, 154, 168
rfatpol, 154
rfdir, 155
rfelfd, 156
rfmeth, 157
rfphon, 157
rfstrs, 157
rfthrd, 158
rfuser, 158
rprim, 89
rprimd, 89

sciss, 158
shiftk, 90
signperm, 168
so typat, 140
soenergy, 149

spgaxor, 122
spgorig, 123
spgroup, 123
spgroupma, 124
spinat, 141
stmbias, 142
strfact, 169
strprecon, 169
strtarget, 169
symafm, 142
symrel, 91

td maxene, 159
td mexcit, 159
timopt, 142
tnons, 91
toldfe, 91
toldff, 92
tolmxf, 169
tolvrs, 92
tolwfr, 92
tphysel, 143
tsmear, 143
typat, 93

udtset, 93
usepaw, 151
useria, userib, useric, userid, userie, 105
userra, userrb, userrc, userrd, userre, 105
useylm, 105

vaclst, 124
vacnum, 124
vacuum, 143
vacwidth, 144
vel, 170
vis, 170
vprtrb, 105

wfoptalg, 106
wtatcon, 170

xangst, 93
xcart, 94
xred, 94

zcut, 149
znucl, 94

175


	Title Page
	New User Guide
	Introduction
	The sequential version of ABINIT: abinis
	Other programs in the ABINIT package
	Input variables to abinit
	Output files
	What does the code do?

	Tutorial
	Lesson 1: The H2 molecule, without convergence studies
	Computing the total energy, and some associated quantities
	Computation of the interatomic distance (method 1).
	Computation of the interatomic distance (method 2)
	Computation of the charge density
	Computation of the atomization energy
	Answers to the questions, section 1.1.10

	Lesson 2:The H2 molecule, with convergence studies
	Summary of the previous lesson
	The convergence in ecut
	The convergence in acell
	The final calculation in Local (Spin) Density Approximation
	The use of the Generalized Gradient Approximation

	Lesson 3: Crystalline silicon
	Computing the total energy of silicon at fixed number of k--points
	Starting the convergence study with respect to k--points
	Actually performing the convergence study with respect to k--points
	Determination of the lattice parameters
	Computing the band structure

	Lesson 4: Aluminum, the bulk and the surface
	Computing the total energy and lattice parameters of aluminum for a fixed smearing and number of k--points.
	The convergence study with respect to k--points
	The convergence study with respect to both number of k--points AND broadening factor (tsmear)
	Determination of the surface energy of aluminum (100): changing the orientation of the unit cell
	Determination of the surface energy: a (3 aluminum layer + 1 vacuum layer) slab calculation
	Determination of the surface energy: increasing the number of vacuum layers
	Determination of the surface energy: increasing the number of aluminum layers

	Lesson 5: Dynamical and dielectric properties of AlAs
	The ground--state geometry of AlAs
	Frozen--phonon calculation of a second derivative of the total energy
	Response--function calculation of a second derivative of the total energy
	Response--function calculation of the dynamical matrix at Gamma
	Response--function calculation of the effect of an homogeneous electric field
	Response--function calculation of phonon frequencies at non--zero q
	The computation of full phonon band structures and thermodynamical properties

	Lesson 6: The quasi--particle band structure of Silicon, in the GW approximation
	Computation of the Silicon band gap at Gamma, using a GW calculation
	Preparing convergence studies: Kohn--Sham structure (KSS file) and screening (EM1 file)
	Convergence on the number of planewaves in the wavefunctions to calculate the Self--Energy
	Convergence on the number of planewaves to calculate Sigma_x
	Convergence on the number of bands to calculate the Self--Energy
	Convergence on the number of planewaves in the wavefunctions to calculate the screening (-1)
	Convergence on the number of bands to calculate the screening
	Convergence on the dimension of the -1 matrix
	Calculation of the GW corrections for the band gap in Gamma


	ABINIS Help
	How to run the code
	Introducing the files file
	Running the code
	The underlying theoretical framework and algorithms

	The input file
	Format of the input file
	More about ABINIT input variables
	The multi--dataset mode
	Defining a series
	Defining a double loop dataset
	File names in the multi--dataset mode

	The ``files'' file
	The pseudopotential files
	The different output files
	The log file
	The main output file
	More on the main output file
	The header
	The density output file
	The potential files
	The wavefunction output file
	Other output files

	Numerical quality of the calculations
	Final remarks

	Main ABINIT code, input variables: Complete list
	Basic variables, VARBAS
	acell
	angdeg
	ecut
	iscf
	ixc
	jdtset
	kpt
	kptnrm
	kptopt
	natom
	nband
	ndtset
	ngkpt
	nkpt
	nshiftk
	nsppol
	nstep
	nsym
	ntypat
	occopt
	rprim
	rprimd
	shiftk
	symrel
	tnons
	toldfe
	toldff
	tolvrs
	tolwfr
	typat
	udtset
	xangst
	xcart
	xred
	znucl

	Developpement variables, VARDEV 
	accesswff
	ceksph
	dedlnn
	densty
	effmass
	eshift
	exchn2n3
	fftalg
	fftcache
	freqsusin
	freqsuslo
	idyson
	ikhxc
	intexact
	intxc
	iprcch
	iprcfc
	isecur
	istatr
	istatshft
	istwfk
	ldgapp
	mqgrid
	nbandsus
	nbdblock
	ndyson
	nfreqsus
	nloalg
	nnsclo
	optforces
	ortalg
	qprtrb
	useria, userib, useric, userid, userie
	userra, userrb, userrc, userrd, userre
	useylm
	vprtrb
	wfoptalg

	Files handling variables, VARFIL
	cmlfile
	getden
	getkss
	getocc
	getscr
	getwfk
	getwfq
	get1wf
	getddk
	get1den
	get1wfden
	irdkss
	irdscr
	irdwfk
	irdwfq
	ird1wf
	irdddk
	kssform
	mffmem
	mkmem
	prtcml
	prtden
	prtdos
	prteig
	prtfsurf
	prtgeo
	prtkpt
	prtpot
	prtvha
	prtvhxc
	prtvxc
	prtstm
	prtvol
	prtwf
	prt1dm

	Geometry builder + symmetry related variables, VARGEO
	brvltt
	genafm
	natrd
	nobj
	objaat, objbat
	objaax, objbax
	objan, objbn
	objarf, objbrf
	objaro, objbro
	objatr, objbtr
	ptgroupma
	spgaxor
	spgorig
	spgroup
	spgroupma
	vaclst
	vacnum

	Ground-state calculation variables, VARGS
	algalch
	bdberry
	berryopt
	boxcenter
	boxcutmin
	charge
	chkexit
	chkprim
	cpus, cpum, cpuh
	diecut
	diegap
	dielam
	dielng
	diemac
	diemix
	dosdeltae
	efield
	enunit
	fband
	fixmom
	iatsph
	iprcel
	kberry
	kptbounds
	kptrlatt
	kptrlen
	mixalch
	natsph
	nbdbuf
	nberry
	ndivk
	ngfft
	nline
	npsp
	npspalch
	nqpt
	nspden
	nspinor
	ntypalch
	ntyppure
	occ
	optdriver
	so_typat
	pspso (obsolete)
	qpt
	qptnrm
	ratsph
	spinat
	stmbias
	symafm
	timopt
	tphysel
	tsmear
	vacuum
	vacwidth

	GW variables, VARGW
	bdgw
	ecuteps
	ecutsigx
	ecutwfn
	gwcalctyp
	kptgw
	nbandkss
	npwkss
	nkptgw
	nomegasrd
	npweps
	npwsigx
	npwwfn
	nsheps
	nshsigx
	nshwfn
	omegasrdmax
	ppmfrq
	soenergy
	zcut

	Internal variables, VARINT
	kptns
	mband
	mgfft
	mpw
	nelect
	nfft
	qptn
	usepaw

	Parallelisation variables, VARPAR
	localrdwf

	Projector-Augmented Wave variables, VARPAW
	ngfftdg
	pawecutdg
	pawlcutd
	pawmqgrdg
	pawnphi
	pawntheta

	Response Function variables, VARRF
	dsifkpt
	mkqmem
	mk1mem
	prepanl
	prtbbb
	rfasr
	rfatpol
	rf1atpol
	rf2atpol
	rf3atpol
	rfdir
	rf1dir
	rf2dir
	rf3dir
	rfelfd
	rf1elfd
	rf2elfd
	rf3elfd
	rfmeth
	rfphon
	rf1phon
	rf2phon
	rf2phon
	rfstrs
	rfthrd
	rfuser
	sciss
	td_maxene
	td_mexcit

	Structure optimization variables, VARRLX
	amu
	delayperm
	dilatmx
	dtion
	ecutsm
	friction
	getcell
	getxcart
	getxred
	getvel
	iatcon
	iatfix
	iatfixx
	iatfixy
	iatfixz
	ionmov
	mdftemp
	mditemp
	mdwall
	natcon
	natfix
	natfixx
	natfixy
	natfixz
	nconeq
	noseinert
	ntime
	ntypat
	optcell
	restartxf
	rfasr
	signperm
	strfact
	strprecon
	strtarget
	tolmxf
	vel
	vis
	wtatcon


	Index

