forum@abinit.org
Subject: The ABINIT Users Mailing List ( CLOSED )
List archive
- From: ngalamba@cii.fc.ul.pt
- To: forum@abinit.org
- Subject: MD simulations
- Date: Mon, 26 Sep 2005 19:58:23 +0200
Dear ABINIT users
(Thanks for you answer to my first question Anglade)
In fact the problem I have runned into in my MD simulations of ionic systems
(NaCl) is that after a
number of time-steps (about 150) the total energy stops being conserved and
the energy does not converge (even within 50 SCF cycles). At first I thought
this may had something to do with the way I was linking the partial runs, but
now I am positive it does not as it should. In fact the differences I
describe are only a matter of my energy convergence tolerance as it is
normal.
I notice that when convergence is not achieved and the total energy is lost a
particle comes out the boundary of my supercell, i.e. xcart > acell in one or
two space dimensions.
I have been trying different time-steps and energy tolerances but without
much
success. Perhaps anyone could suggest me possible causes for this behaviour.
Below its my my complete input file. I am using the LDA Troullier-Martins
pseudopotentials.
Maybe I am just doing something terribly wrong and did not notice.
Thanks in advance
Nuno Galamba
INPUT FILE:
#Definition of the unit cell
acell 3*24.76786
ixc 1 # Integer for eXchange-Correlation choice
# 1=> LDA or LSD, Teter Pade parametrization
# 11=> GGA, Perdew-Burke-Ernzerhof GGA functional
#Definition of the atom types
ntypat 2 # There are two types of atom
znucl 11 17 # The keyword "znucl" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. There are two types, Na and Cl.
#Definition of the atoms
natom 64 # There are 64 atoms
# Na is type 1 Cl is type 2
typat 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
xcart # This keyword indicate that the location of the atoms
# will follow, one triplet of number for each atom
5.65610083276636E+00 6.93007271203097E+00 3.98004166996406E+00
-1.58868622079202E+00 2.63595639332169E-01 5.57671342725475E+00
-1.49430205342578E+00 8.27373084310587E+00 4.28663901715516E+00
6.20932440764681E+00 6.19744320361232E-01 3.81901561805629E+00
1.66283625121153E+01 5.40662784441812E+00 6.76384828606851E+00
1.19212420178225E+01 1.74664875846193E+00 8.84595707944380E+00
1.36798041986300E+01 5.19789720677238E+00 1.18842635240986E+00
1.57698075022031E+01 -2.47088396806683E+00 1.71827272598309E+00
8.82385488253922E+00 1.93800507464858E+01 8.03045840728254E+00
-2.96940590475408E-01 1.43296676103769E+01 7.94873369769508E+00
2.75193713439659E+00 1.66809052988040E+01 2.21186590278981E+00
5.75064910174398E+00 1.11428516068944E+01 -1.19206927353112E+00
1.78970548725394E+01 1.96098850528562E+01 8.36735017031766E+00
1.32951507724950E+01 1.30273516304540E+01 8.66302964244192E+00
1.09075464378747E+01 1.74430765618708E+01 -7.18628166590436E-01
1.79309814303632E+01 1.32659758625039E+01 2.78007618501099E+00
2.01757826162747E+00 3.70882481536942E+00 2.13777333539610E+01
5.45781986810109E-01 -8.53595129266538E-01 1.58192342348621E+01
2.58739506332547E+00 8.57151174405726E+00 1.16833167489726E+01
6.31615279367772E+00 3.21631280617979E+00 1.48884408706589E+01
1.80911588944757E+01 3.96995354871461E+00 2.15402530489654E+01
1.03525180976381E+01 -1.06550027411973E+00 2.04211691806326E+01
1.37565960570218E+01 5.51216185937855E+00 1.52867729052235E+01
1.74905236377205E+01 2.79139073706610E-01 1.22055002724973E+01
6.06615778959029E+00 1.87655731011766E+01 1.71278047467966E+01
3.27913887860641E-01 1.41249716583982E+01 1.71225139608150E+01
2.32242959524589E+00 2.04172925233845E+01 1.12789799054557E+01
8.64607887529689E+00 1.20514391946926E+01 1.71318269534357E+01
1.96817656859490E+01 1.93523059315386E+01 1.86473997160438E+01
1.64319052040267E+01 1.24034827539144E+01 1.83563535673751E+01
1.31683971038350E+01 2.05498272275597E+01 1.41933514996297E+01
1.86645236989813E+01 1.04990490908508E+01 1.24197018270058E+01
-3.44974273400398E-01 3.39183432946808E+00 1.26158860130092E+00
1.21850776103177E+00 5.38621021103299E+00 7.27867587909737E+00
6.71668083259319E+00 -3.04893236900015E-01 9.19282809484037E+00
5.52626261040444E+00 6.68068005936578E+00 -1.33470871179536E+00
1.10729252318763E+01 7.34629036967786E-01 1.38425105592482E+00
1.22420458091739E+01 5.42730478887774E+00 5.64406749630738E+00
1.64808041637378E+01 1.04623190409022E-01 7.05990714953118E+00
1.81489484769993E+01 5.44020577061157E+00 1.48758605236480E+00
-1.00712948377719E+00 1.30466527849894E+01 3.24896054062410E+00
2.85687073048752E+00 1.87221152967594E+01 6.64479963145403E+00
6.18553802180375E+00 1.13751327461171E+01 3.94029445346575E+00
6.81250206482103E+00 2.00454488296633E+01 3.00772892811612E-02
1.54649514651704E+01 1.38577538331537E+01 -1.98271195022125E+00
1.27794240773162E+01 1.74400126309805E+01 7.94295780064528E+00
1.73868429705585E+01 1.05386873127956E+01 6.32376714120894E+00
1.97748603591924E+01 1.85203159628838E+01 3.55269786882534E+00
-1.77300902536039E+00 -1.05286467903429E+00 9.76102740263670E+00
-2.87794597891296E+00 1.16086992092086E+00 1.83754896486290E+01
5.60009863356821E+00 -3.55360184993267E-01 1.82504568294007E+01
5.58914364795695E+00 8.10228710234038E+00 1.51389875002830E+01
1.15794247479560E+01 1.52694144559577E+00 1.37711277243081E+01
1.28383634052612E+01 5.11571607980042E+00 2.01284534540082E+01
1.69508684302737E+01 -1.04812430369407E+00 2.11689116152223E+01
1.77409434748636E+01 5.30549495482421E+00 1.15541098433276E+01
-1.12188435476261E+00 1.08626174281289E+01 1.11423767086881E+01
2.89157679340877E-01 1.87787040490874E+01 1.61738341528294E+01
4.98236213443105E+00 1.46260682731989E+01 1.88044193480543E+01
7.47991890414865E+00 1.63109639380093E+01 1.22188263902333E+01
1.42863296997519E+01 9.66031303328476E+00 1.28482069102145E+01
1.05373826482952E+01 1.75813280969912E+01 1.85699286439348E+01
2.02139995948367E+01 1.42926205456365E+01 1.58161454757025E+01
1.78909497953517E+01 1.99708303037689E+01 1.28418647876767E+01
vel
3.61345755190633E-04 1.59222580487926E-04 -2.77175074102560E-05
-7.94124752426413E-04 2.62143756552861E-05 2.46005846575847E-04
6.06414817868265E-05 4.86080442874640E-04 -5.69213988070817E-04
1.94696258009353E-04 7.56388019803739E-05 1.55924145855197E-04
-6.81305347480819E-04 -6.88615541563244E-05 7.60960234425053E-04
4.26915966036115E-04 1.66635414244097E-04 -2.32659334756115E-04
-1.99991078188162E-04 1.91948865478680E-04 -1.49301991428125E-04
4.84155499711047E-05 -8.57300783824437E-05 2.18255753050848E-05
-3.03532143194674E-04 -1.43398741615671E-04 1.16603320920703E-05
-2.58727287730702E-04 2.17402859081001E-04 4.51481556108830E-04
-3.43055308460619E-04 1.90754552449349E-04 1.78812746828536E-04
-4.31953399259863E-04 3.62309251085063E-05 -4.55754759246047E-04
6.40081806837475E-04 6.51547571151856E-04 1.00072373719001E-04
5.44381826373121E-04 -2.70740536621591E-04 -1.91607989883120E-04
-2.48358368769158E-04 -8.74190122605132E-04 -1.52884001727244E-05
-3.60419313307425E-04 1.07639507430958E-03 1.61553411068105E-04
2.13141742631626E-04 1.28701984080752E-05 2.58948971472996E-04
2.57577902732932E-04 7.09749198743148E-04 -9.15557293102000E-05
2.36831507122643E-04 -5.51371441063780E-04 -1.82064948476860E-04
-8.47405521228355E-06 5.49285683128093E-04 -3.81845184558150E-04
-4.11036573594706E-04 -2.12672547690139E-05 6.78055500494184E-04
-2.43250732701722E-04 -1.86492505154946E-04 3.87732680303958E-04
4.59852228359158E-04 -2.28067503063192E-04 2.87374293466821E-04
3.79436388130732E-04 -1.21622520562676E-04 4.28857628326593E-04
-5.66732944218849E-05 3.82666891466614E-05 3.55185691916205E-04
1.62940953891326E-04 4.10183379721428E-04 -7.30677721712143E-04
-8.55537849604790E-05 2.48522310391418E-04 -6.39272002565119E-05
6.91922912594730E-04 3.79786181579471E-04 2.85738195646260E-04
3.48876992080368E-04 7.96703170255665E-05 5.82640845293898E-04
7.03013539061508E-05 1.66492540632092E-04 -2.64740054178196E-04
-4.81057971763449E-04 -4.02538405413973E-04 5.91208606679974E-04
6.84660363085143E-05 -6.31044301666006E-04 2.77728904985394E-04
-7.86667076780607E-05 -9.13710047240675E-05 -3.05484958554519E-04
-3.14497134487516E-04 -1.44788385895228E-04 -2.53397869895614E-04
1.91776118159379E-04 6.20323794597650E-05 8.96482897085823E-06
-4.89657996883443E-04 -8.03974639952289E-05 1.44722036361834E-04
3.19707866799983E-05 -2.70889502728457E-04 5.33791678975208E-05
-2.78349089043350E-06 -2.85186811447324E-04 1.61981842983486E-04
-1.04618748793896E-04 -2.28202988141319E-04 7.90379285890031E-06
-2.02693812792706E-04 8.69208240839734E-05 -1.84601881427213E-04
-8.50218656013146E-05 -8.39331545859563E-05 6.42536289917873E-04
2.92505776294561E-04 3.63154915768707E-04 6.03155586847407E-05
-3.40104745704510E-05 -2.30454886952254E-04 -2.04088755425137E-04
-3.77072359684074E-04 3.97765835567884E-04 1.12993505119051E-04
7.55670407586609E-05 9.70859721352099E-05 3.14167124563309E-04
-1.44434284361358E-04 -1.32708233980981E-04 5.47298003152002E-05
-6.08024450694477E-05 -4.97003786961105E-05 -3.11797153424798E-05
-8.56178777930613E-05 1.06254292787205E-04 -1.33999242621271E-04
-2.80479286292257E-05 9.74725746784787E-05 -4.75313418554370E-04
2.44355000913113E-04 -8.43838982661567E-05 -1.07491644359097E-04
-4.81862237841437E-05 2.10948350585710E-04 -2.35769013621597E-05
1.40524746720755E-04 -3.22263735677215E-04 2.88687187596357E-04
-4.11478798117340E-04 -2.69315384499740E-04 -2.36382259346532E-04
-1.07055033660231E-04 -9.75083786074954E-05 5.21628093244381E-05
3.31081873016545E-04 2.04484191581289E-04 -2.88181851894121E-04
3.42738488329567E-04 -7.15579211811260E-05 2.89191747320400E-04
-6.28194429251086E-05 -1.73710346766907E-04 -8.12427997233024E-04
8.16713430019538E-05 -2.54381809707164E-04 2.91038657272049E-04
-1.55432610422003E-04 4.95419304109589E-06 -2.94084032674493E-05
2.28510959359023E-04 -2.15854603544687E-04 2.24991198746045E-04
-4.41074379551528E-04 1.67034560302883E-04 -1.53824319378859E-04
3.12748574781470E-04 2.67345432333349E-04 -1.77133432911651E-04
-3.24409756064884E-04 -4.25684700707660E-04 -1.97272277617721E-04
3.78425379320122E-04 1.07138462246563E-05 2.29306378688200E-06
#Definition of the planewave basis set
ecut 35.0 # Maximal plane-wave kinetic energy cut-off, in Hartree
#Definition of the k-point grid
nkpt 1 # Only one k point is needed for isolated system,
# taken by default to be 0.0 0.0 0.0
irdwfk 1 # Restart simulation with the wavefunction from a previous run
#Definition of the SCF procedure
iscf 5 #Control of the Self-Consistent Field method to be used
#The default is 5
nstep 50 # Maximal number of SCF cycles
toldfe 1.0d-6 # Will stop when, twice in a row, the difference
# between two consecutive evaluations of total energy
# differ by less than toldfe (in Hartree)
diemac 1.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
diemix 0.5 # function used as the standard preconditioner
# is described in the "dielng" input variable section.
# Here, we follow the prescriptions for molecules
# in a big box
# Molecular Dynamics Variables Setup
#
amu(2) 22.98977 35.453
ionmov 6 # N,V,E MD using Verlet algorithm
dtion 206.71 # time-step in atu 5fs
ntime 100
On Friday 23 September 2005 11:11, Anglade Pierre-Matthieu wrote:
> Hi,
>
> This won't answer your question but please consider the following:
> Molecular dynamics is chaotic and you'll never ever get exact results.
> Whatever precision you have for your computation you will always get
> results very differents (after even a not so big number of steps) from what
> a non arbitrary precision computation would gives.
> Then I would say that you can behaves in two different ways: either you
> choose to consider that molecular dynamics is not a suitable technic for
> your problem; or you decide not to mind that much about the differences
> resulting from a small error on your atoms phase space coordinates at the
> first restart step.
>
> regards
>
> PMA
>
> On 9/23/05, ngalamba@cii.fc.ul.pt <ngalamba@cii.fc.ul.pt> wrote:
> > Dear ABINIT users
> >
> > I am trying to use ABINIT to carry molecular dynamics simulations (N,V,E)
> > (IONMVOV 6) of simple ionic melts (e.g. NaCl).
> > Because it is hard to get a complete simulation on a single run without
> > computers crashing for some reason I have been trying to divide my
> > production runs in several stages that I therefore need to link.
> >
> > To link the partial simulations (say a 100 time-steps each with a
> > time-step of 5 fento seconds) I use the variable IRDWFK 1 to use the
> > wavefunction from the previous partial run and update the positions and
> > velocities in the new input file. ABINIT tells me that the file is good
> > for restarting the simulation and takes it from there.
> >
> > The "problem" is that the first time (MD step 1 not 0) ABINIT updates the
> > positions and velocities using the Verlet algorithm it only gives me the
> > first 6 digits of positions and velocities equal to those I would obtain
> > if I had continued the simulation on a single run. Then as more and more
> > integrations are performed the positions and velocities start to get more
> > and more different from those I would obtain in a single run.
> >
> > Is there any way of restarting a MD calculation in a such a way that the
> > results are identical whether we do it in several stages using the _WFK
> > files as input or in just a single run?
> >
> > I would be highly appreciated if anyone could give some hint on this type
> > of calculation as I am new to ABINIT and also to Hellman-Feynamnn MD.
> >
> > Thanks in advance.
> >
> > Nuno Galamba
>
> --
> Pierre-Matthieu Anglade
--
Nuno Galamba
Grupo de Física-Matemática
Complexo Interdisciplinar
Av. Prof Gama Pinto 2,
1649-003 LISBOA
PORTUGAL
Voice: 21 790 48 59 Ext: 4259
email: ngalamba@cii.fc.ul.pt
- MD simulations, ngalamba, 09/26/2005
- Re: [abinit-forum] MD simulations, Mustafa Uludogan, 09/27/2005
- Re: [abinit-forum] MD simulations, Nuno Galamba, 09/27/2005
- Re: [abinit-forum] MD simulations, Xavier Gonze, 09/27/2005
- Re: [abinit-forum] MD simulations, Nuno Galamba, 09/27/2005
- Re: [abinit-forum] MD simulations, Konstantin Rushchanskii, 09/27/2005
- Re: [abinit-forum] MD simulations, Mustafa Uludogan, 09/27/2005
Archive powered by MHonArc 2.6.16.