Skip to Content.
Sympa Menu

forum - Re: PARALLEL BUG Re: Re: [abinit-forum] error during nonlinear rf on the cluster

forum@abinit.org

Subject: The ABINIT Users Mailing List ( CLOSED )

List archive

Re: PARALLEL BUG Re: Re: [abinit-forum] error during nonlinear rf on the cluster


Chronological Thread 
  • From: ilukacevic@fizika.unios.hr
  • To: forum@abinit.org
  • Subject: Re: PARALLEL BUG Re: Re: [abinit-forum] error during nonlinear rf on the cluster
  • Date: Wed, 2 Aug 2006 11:29:05 +0200

In the first place I am apologizing for the too long post.

Regarding kptopt: I followed the Tutorial input file tnlo_2.in. Dataset1
should consider k points in the irr. BZ (kptopt=1), and Dataset2 in the full
BZ (kptopt=2; although, kptopt=3 considers full BZ, and kptopt=2 only half of
the BZ - this is not fully understandable to me).

Regarding parallel comp. flag: I am not sure of this, because of the previous
calculation I have made. I am sending a makefile_macros from the cluster as a
reference anyway.

Regarding original values: I wouldn't mind at all. First I used ngkpt=4 4 4
and ecut=50. After the message (which I posted previously) I had increased
ecut to 60. Again I got the same massage. Then I increased ngkpt to 8 8 8
(keeping ecut=60) and then the calculation stoped with an error.
As a reference I am also sending my anaddb output file for the case ngkpt=6 6
6 and ecut=60.

Thank You very much for troubling with this.

I. Lukacevic



makefile_macros file:

# For the sequential version
# Machine type
MACHINE=P6
# Fortran optimized compilation
FC=/opt/mpich/intel/bin/mpif90
FFLAGS = -O3 -w -tpp7 -axW -static-libcxa
FFLAGS_Src_5common = -O2 -mp -xW -tpp7 -static-libcxa
FFLAGS_Src_2psp = -O0 -xW -tpp7 -static-libcxa
FFLAGS_Src_2nonlocal = -O0 -xW -tpp7 -static-libcxa
#FFLAGS_Src_6response = -O0 -xW -tpp7 -static-libcxa # not effective for
Test_v4
FFLAGS_LIBS= -O3 -w -static-libcxa
LIBS=$(LAPACK) $(BLAS) -L/opt/intel/fc/9.0/lib -L/opt/mpich/intel/lib -lsvml
-lcxa -static-libcxa /opt/intel/cmkl/8.0/lib/32/libguide.a
/opt/intel/cmkl/8.0/lib/32/libmkl_def.so
/opt/intel/cmkl/8.0/lib/32/libmkl_p4.so
/opt/intel/cmkl/8.0/lib/32/libmkl_lapack.a -lunwind -lguide

# C preprocessor, used to preprocess the fortran source.
CPP=/lib/cpp
CPP_FLAGS=-P -traditional -D__IFC
# The cpp directive CHGSTDIO changes the standard I/O definition
# Uncomment the next line for this to happen.
#CPP_FLAGS=-P -DCHGSTDIO

# C optimized compilation.
CC=/opt/mpich/intel/bin/mpicc
CFLAGS=-O

# Location of perl. Used to generate the script fldiff, in ~ABINIT/Utilities.
PERL=/usr/bin/perl

# List of machine-dependent routines
MACHINE_DEP_C_SEQ_SUBS_LIST=etime.o
####################################################################
# For the parallel version: MPICH / MYRINET
# Compiler flags and definitions
FFLAGS_PAR= $(FFLAGS) -I/opt/mpich/intel/include

# List of machine-dependent routines
MACHINE_DEP_C_PAR_SUBS_LIST=etime.par

# Location of the MPI library
MPI_A=/opt/mpich/intel/lib/libmpich.a /opt/mpich/intel/lib/libfmpich.a -Vaxlib
# Include blas, lapack, and any other libraries here
LIBS_PAR=$(LIBS) $(MPI_A)
# This is a last line in makefile_macros ----------



Anaddb output file:

Starting date : Fri 28 Jul 2006.
================================================================================

-outvars9: echo values of input variables ----------------------

Flags :
dieflag 1
nlflag 1
elaflag 3
instrflag 1
piezoflag 3
Miscellaneous information :
eivec 1
asr 1
chneut 2
Frequency information :
nfreq 1
frmin 0.00000000E+00
frmax 1.00000000E+01
Non-linear response information :
alphon 1
prtmbm 1
ramansr 1
First list of wavevector (reduced coord.) :
nph1l 1
qph1l
0.00000000E+00 0.00000000E+00 0.00000000E+00
1.000E+00
Second list of wavevector (cart. coord.) :
nph2l 1
qph2l
1.00000000E+00 0.00000000E+00 0.00000000E+00
0.000E+00

================================================================================

read the DDB information and perform some checks

-begin at tcpu 0.016 and twall 0.081 sec

Real(R)+Recip(G) space primitive vectors, cartesian coordinates
(Bohr,Bohr^-1):
R(1)= 0.0000000 4.9625000 4.9625000 G(1)= -0.1007557 0.1007557
0.1007557
R(2)= 4.9625000 0.0000000 4.9625000 G(2)= 0.1007557 -0.1007557
0.1007557
R(3)= 4.9625000 4.9625000 0.0000000 G(3)= 0.1007557 0.1007557
-0.1007557
Unit cell volume ucvol= 2.4441708E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
Now the whole DDB is in central memory

================================================================================

Dielectric Tensor and Effective Charges

-begin at tcpu 0.472 and twall 0.575 sec

anaddb : Zero the imaginary part of the Dynamical Matrix at Gamma,
and impose the ASR on the effective charges

The violation of the charge neutrality conditions
by the effective charges is as follows :
atom electric field
displacement direction
1 1 -0.087351 0.000000
1 2 0.000000 0.000000
1 3 0.000000 0.000000
2 1 0.000000 0.000000
2 2 -0.087351 0.000000
2 3 0.000000 0.000000
3 1 0.000000 0.000000
3 2 0.000000 0.000000
3 3 -0.087351 0.000000

Effective charge tensors after
imposition of the charge neutrality,
and eventual restriction to some part :
atom displacement
1 1 -2.942846E+00 -9.134378E-10 -2.185676E-09
1 2 1.272238E-09 -2.942846E+00 2.185676E-09
1 3 -1.272238E-09 9.134378E-10 -2.942846E+00
2 1 2.942846E+00 9.134378E-10 2.185676E-09
2 2 -1.272238E-09 2.942846E+00 -2.185676E-09
2 3 1.272238E-09 -9.134378E-10 2.942846E+00
Now, the imaginary part of the dynamical matrix is zeroed


Non-linear optical coefficients d (pm/V)
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000


The violation of the Raman sum rule
by the first-order electronic dielectric tensors is as follows
atom
displacement
1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

2 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

3 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000



First-order change in the electronic dielectric
susceptibility tensor (Bohr^-1)
induced by an atomic displacement
(after imposing the sum over all atoms to vanish)
atom displacement
1 1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
1 2 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
1 3 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

2 1 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
2 2 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
2 3 0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000


================================================================================

Treat the first list of vectors

-begin at tcpu 0.474 and twall 0.584 sec

Phonon wavevector (reduced coordinates) : 0.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 8.816670E-04 8.816670E-04
8.816670E-04
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 1.935035E+02 1.935035E+02
- 1.935035E+02

Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 0.00000000E+00 -1.69309720E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 -1.69309716E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 1.69309720E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 1.69309717E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 1.69309724E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 1.69309713E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 8.816670E-04
; 1 1.85583981E-03 0.00000000E+00 -7.98027288E-04
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -1.30358346E-03 0.00000000E+00 5.60552281E-04
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 8.816670E-04
; 1 0.00000000E+00 -2.02014581E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 1.41899562E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 8.816670E-04
; 1 7.98027305E-04 0.00000000E+00 1.85583985E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -5.60552262E-04 0.00000000E+00 -1.30358341E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00

Analysis of degeneracies and characters (maximum tolerance=1.00E-06 a.u.)
Symmetry characters of vibration mode # 1
degenerate with vibration modes # 2 to 3
3.0 -3.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0
1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0
-1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0
1.0
Symmetry characters of vibration mode # 4
degenerate with vibration modes # 5 to 6
3.0 -3.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 -1.0
1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0
-1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 1.0 -1.0 -1.0 1.0 -1.0
1.0

================================================================================

Treat the second list of vectors

-begin at tcpu 0.477 and twall 0.586 sec

Phonon at Gamma, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
Phonon energies in Hartree :
0.000000E+00 0.000000E+00 0.000000E+00 8.816670E-04 8.816670E-04
1.113381E-03
Phonon frequencies in cm-1 :
- 0.000000E+00 0.000000E+00 0.000000E+00 1.935035E+02 1.935035E+02
- 2.443589E+02

Eigendisplacements
(will be given, for each mode : in cartesian coordinates
for each atom the real part of the displacement vector,
then the imaginary part of the displacement vector)
Mode number 1 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 0.00000000E+00 -1.69309720E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 -1.69309716E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 2 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 0.00000000E+00 1.69309720E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 1.69309717E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 3 Energy 0.000000E+00
Attention : low frequency mode.
(Could be unstable or acoustic mode)
; 1 1.69309722E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 1.69309715E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 4 Energy 8.816670E-04
; 1 0.00000000E+00 0.00000000E+00 -2.02014579E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 0.00000000E+00 1.41899561E-03
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 5 Energy 8.816670E-04
; 1 0.00000000E+00 2.02014579E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 0.00000000E+00 -1.41899561E-03 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
Mode number 6 Energy 1.113381E-03
; 1 2.02014580E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00
; 2 -1.41899564E-03 0.00000000E+00 0.00000000E+00
; 0.00000000E+00 0.00000000E+00 0.00000000E+00


Raman susceptibility of zone-center phonons, with non-analyticity in the
direction (cartesian coordinates) 1.00000 0.00000 0.00000
========================================================================


Mode 1 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 2 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 3 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 4 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 5 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 6 ( 244.36 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000


Mode effective charges
Mode number. x y z length
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000
4 -4.100 0.000 0.000 4.100
5 0.000 4.100 0.000 4.100
6 0.000 0.000 -4.100 4.100

Oscillator strengths (in a.u. ; 1 a.u.=253.2638413 m3/s2)
Mode number. xx yy zz xy xz
yz
; 1 Real 1.0407E-19 3.2217E-24 3.2996E-23 -5.7904E-22 1.8531E-21
-1.0310E-23
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
; 2 Real 3.2217E-24 1.1564E-20 3.2217E-24 1.9301E-22 -3.2217E-24
-1.9301E-22
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
; 3 Real 4.8758E-20 3.2217E-24 1.1564E-20 -3.9634E-22 -2.3745E-20
1.9301E-22
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
; 4 Real 1.0243E-04 2.4992E-26 3.7824E-22 -1.6000E-15 1.9683E-13
-3.0746E-24
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
; 5 Real 2.4992E-26 1.0243E-04 2.4992E-26 1.6000E-15 -2.4992E-26
-1.6000E-15
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00
; 6 Real 2.5597E-25 2.4992E-26 1.0243E-04 -7.9983E-26 -5.1205E-15
1.6000E-15
; Imag 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
0.0000E+00

Electronic dielectric tensor
11.39219315 0.00000000 0.00000000
0.00000000 11.39219315 0.00000000
0.00000000 0.00000000 11.39219315

Full dielectric tensor at frequency 0.0000E+00 Hartree
1.81671155E+01 -6.34246756E-10 1.18854276E-08
1.71390859E-10 1.81671154E+01 9.84819875E-10
1.23428315E-08 6.35688980E-10 1.81671154E+01


Generalized Lyddane-Sachs-Teller relation at zero frequency :
Direction Dielectric constant
1.00000 0.00000 0.00000 1.81671155E+01


Raman susceptibilities of transverse zone-center phonon modes
=============================================================


Mode 1 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 2 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 3 ( 0.00 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 4 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 5 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 6 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000



Output of the EO tensor (pm/V) in Voigt notations
=================================================

Mode by mode decomposition


Mode 4 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 5 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Mode 6 ( 193.50 cm-1)
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

Electronic contribution to the EO tensor
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000


Total EO tensor (pm/V) in Voigt notations
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

================================================================================

Calculation of the internal-strain tensor

-begin at tcpu 0.481 and twall 0.590sec

Force-response internal strain tensor(Unit:Hartree/bohr)

Atom dir strainxx strainyy strainzz strainyz strainxz
strainxy
1 x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
1 y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
1 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000

phonon modes warning- :
accoustic sum rule violation met:the eigenvalues of accoustic mode
are too large at Gamma point
increase cutoff energy or k-points sampling.
the three eigenvalues are: 1.292038E-04 -2.382808E-11 1.292317E-04

Displacement-response internal strain tensor (Unit:Bohr)

Atom dir strainxx strainyy strainzz strainyz strainxz
strainxy
1 x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
1 y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
1 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 x 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 y 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000
2 z 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.0000000

================================================================================

Calculation of the elastic and compliances tensor

-begin at tcpu 0.482 and twall 0.591sec

phonon modes warning- :
accoustic sum rule violation met:the eigenvalues of accoustic mode
are too large at Gamma point
increase cutoff energy or k-points sampling.
the three eigenvalues are: 1.292038E-04 -2.382808E-11 1.292317E-04

Elastic Tensor(clamped ion)(Unit:10^2GP,VOIGT notation):

4.6510813 1.1437100 1.1437099 0.0000000 -0.0000001 -0.0000004
1.1437099 4.6510818 1.1437099 0.0000001 -0.0000001 -0.0000004
1.1437099 1.1437099 4.6510819 0.0000001 -0.0000001 -0.0000003
-0.0000001 -0.0000002 -0.0000002 0.6621261 0.0000001 0.0000000
0.0000000 0.0000000 0.0000000 0.0000001 0.6621263 -0.0000001
0.0000002 0.0000002 0.0000001 0.0000000 -0.0000001 0.6621264

Elastic Tensor(relaxed ion)(Unit:10^2GP,VOIGT notation):

4.6510813 1.1437100 1.1437099 0.0000000 -0.0000001 -0.0000004
1.1437099 4.6510818 1.1437099 0.0000001 -0.0000001 -0.0000004
1.1437099 1.1437099 4.6510819 0.0000001 -0.0000001 -0.0000003
-0.0000001 -0.0000002 -0.0000002 0.6621261 0.0000001 0.0000000
0.0000000 0.0000000 0.0000000 0.0000001 0.6621263 -0.0000001
0.0000002 0.0000002 0.0000001 0.0000000 -0.0000001 0.6621264

Compliance Tensor(clamped on) (Unit: 10^-2GP^-1):

0.2381170 -0.0469968 -0.0469968 0.0000000 0.0000000 0.0000001
-0.0469968 0.2381170 -0.0469968 0.0000000 0.0000000 0.0000001
-0.0469968 -0.0469968 0.2381169 0.0000000 0.0000000 0.0000000
0.0000000 0.0000001 0.0000001 1.5102863 -0.0000002 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000002 1.5102859 0.0000002
-0.0000001 -0.0000001 0.0000000 0.0000000 0.0000002 1.5102856

Compliance Tensor(relaxeded ion)(Unit: 10^-2GP^-1):

0.2381170 -0.0469968 -0.0469968 0.0000000 0.0000000 0.0000001
-0.0469968 0.2381170 -0.0469968 0.0000000 0.0000000 0.0000001
-0.0469968 -0.0469968 0.2381169 0.0000000 0.0000000 0.0000000
0.0000000 0.0000001 0.0000001 1.5102863 -0.0000002 0.0000000
0.0000000 0.0000000 0.0000000 -0.0000002 1.5102859 0.0000002
-0.0000001 -0.0000001 0.0000000 0.0000000 0.0000002 1.5102856

================================================================================

Calculation of the piezoelectric tensor

-begin at tcpu 0.483 and twall 0.592sec

Proper piezoelectric constants(clamped ion)(Unit:c/m^2)

0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000

phonon modes warning- :
accoustic sum rule violation met:the eigenvalues of accoustic mode
are too large at Gamma point
increase cutoff energy or k-points sampling.
the three eigenvalues are: 1.292038E-04 -2.382808E-11 1.292317E-04

Proper piezoelectric constants(relaxed ion)(Unit:c/m^2)

0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 0.00000000

================================================================================

+Total cpu time 0.484 and wall time 0.593 sec

anaddb : the run completed succesfully.



Archive powered by MHonArc 2.6.16.

Top of Page