# Crystalline silicon # Calculation of the GW corrections # Dataset 1: ground state calculation # Dataset 2: calculation of the kss file for only Gamma point # Dataset 3: calculation of the screening (epsilon^-1 matrix for W) ndtset 2 # Dataset1: usual self-consistent ground-state calculation # Definition of the k-point grid kptopt1 1 # Option for the automatic generation of k points, ngkpt1 1 1 1 nshiftk1 1 shiftk1 0. 0. 0. # These shifts will be the same for all grids # Definition of the SCF procedure tolwfr 1.0d-16 # Will stop when this tolerance is achieved on total energy getden1 1 # Print out density # Dataset2: calculation of kss file # Definition of k-points istwfk1 1*1 # Option needed for special k-points like Gamma # Definition of the SCF procedure nband1 200 iscf1 -2 # Definition of parameters for the calculation of the kss file nbandkss1 500 # Number of bands in KSS file (the maximum possible) # Dataset3: Calculation of the screening (epsilon^-1 matrix) optdriver2 3 getkss2 1 nband2 200 ecutwfn2 6 ecuteps2 6.0 #ppmfrq 16.7 eV awtr2 1 gwcomp2 1 iscf2 5 # Definition of the unit cell: fcc acell 3*16.2883596972 # This is equivalent to 10.18 10.18 10.18 rprim 1 0 0 # In lessons 1 and 2, these primitive vectors 0 1 0 # (to be scaled by acell) were 1 0 0 0 1 0 0 0 1 0 0 1 # that is, the default. # Definition of the atom types ntypat 2 # There is only one type of atom znucl 6 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. # Definition of the atoms natom 64 # There are two atoms typat 32*1 32*2 # They both are of type 1, that is, Silicon. xred # Reduced coordinate of atoms 0.125 0.125 0.125 0.125 0.125 0.625 0.125 0.625 0.125 0.125 0.625 0.625 0.625 0.125 0.125 0.625 0.125 0.625 0.625 0.625 0.125 0.625 0.625 0.625 0.375 0.375 0.125 0.375 0.375 0.625 0.375 0.875 0.125 0.375 0.875 0.625 0.875 0.375 0.125 0.875 0.375 0.625 0.875 0.875 0.125 0.875 0.875 0.625 0.375 0.125 0.375 0.375 0.125 0.875 0.375 0.625 0.375 0.375 0.625 0.875 0.875 0.125 0.375 0.875 0.125 0.875 0.875 0.625 0.375 0.875 0.625 0.875 0.125 0.375 0.375 0.125 0.375 0.875 0.125 0.875 0.375 0.125 0.875 0.875 0.625 0.375 0.375 0.625 0.375 0.875 0.625 0.875 0.375 0.625 0.875 0.875 0 0 0 0 0 0.5 0 0.5 0 0 0.5 0.5 0.5 0 0 0.5 0 0.5 0.5 0.5 0 0.5 0.5 0.5 0 0.25 0.25 0 0.25 0.75 0 0.75 0.25 0 0.75 0.75 0.5 0.25 0.25 0.5 0.25 0.75 0.5 0.75 0.25 0.5 0.75 0.75 0.25 0 0.25 0.25 0 0.75 0.25 0.5 0.25 0.25 0.5 0.75 0.75 0 0.25 0.75 0 0.75 0.75 0.5 0.25 0.75 0.5 0.75 0.25 0.25 0 0.25 0.25 0.5 0.25 0.75 0 0.25 0.75 0.5 0.75 0.25 0 0.75 0.25 0.5 0.75 0.75 0 0.75 0.75 0.5001 # Definition of the planewave basis set (at convergence 16 Rydberg 8 Hartree) ecut 40.0 # Maximal kinetic energy cut-off, in Hartree # Use only symmorphic operations symmorphi 0 # Definition of the SCF procedure nstep 100 # Maximal number of SCF cycles diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. # This line added when defaults were changed (v5.3) to keep the previous, old behaviour