Skip to Content.
Sympa Menu

forum - Re: [abinit-forum] Symmetry problem in hexagonal supercells

forum@abinit.org

Subject: The ABINIT Users Mailing List ( CLOSED )

List archive

Re: [abinit-forum] Symmetry problem in hexagonal supercells


Chronological Thread 
  • From: matthieu verstraete <matthieu.jean.verstraete@gmail.com>
  • To: forum@abinit.org
  • Subject: Re: [abinit-forum] Symmetry problem in hexagonal supercells
  • Date: Tue, 22 Sep 2009 14:01:50 +0200
  • Domainkey-signature: a=rsa-sha1; c=nofws; d=gmail.com; s=gamma; h=mime-version:in-reply-to:references:date:message-id:subject:from:to :content-type:content-transfer-encoding; b=clokOWi+3eWjsDxu2PcM/H+gosoyhWtaBkNZ82xsUz1WP6p4fWUE2PasAzqe2z0wLH Nkhwwe/9ejKFa1oc1WnDpGeLGFB14rmDPmf7NJ22djqiDH0EZwsdrokGxakL2R1EJexg ytsH1QxKGDw7+PSMeN/OU+jkLV+CO7Xjz861g=

> If I do not explicitly set a spgroup, it does not recognize a symmetry
> and the logfile says "the unit cell is not primitive".
It is correct, of course: unfortunately, in that case (chkprim 0
forced) abinit does not use symmetries in most places (as you are
basically telling it to ignore some of the symmetry checks).

> How can I check, which symmetry is sending the atom to the specified
> position?
if you force spgrp 168 (previous error messages) it tells you which
atom was being treated with which symop when it encountered an error.
The problem may simply be the unit cell origin which does not agree
with the default for your spgrp - but I cannot guarantee that spgrp
and chkprim 0 will work well together : that's not how they are
planned... Normally, you should also not be doing a "trivial"
supercell, but adding a defect or something.

g'luck

Matthieu


>
> Attached you find the input / output & log file.
>
> Thank you very much for your time.
>
> Marc
>
> matthieu verstraete schrieb:
>> Normally chkprim 1 should complain about your supercell, as it
>> replicates the irreducible primitive one.
>>
>> Your coordinates look ok: does abinit complain from the beginning, or
>> only after some cycles of relaxation?
>>
>> Normally you do not need to fix the atoms, as they are fixed by
>> symmetry (try without the iatfix etc)
>>
>> You may be constraining things too much by specifying the spgroup
>> explicitly. Try without it, and see if abinit finds the correct one by
>> itself. You could check which symmetry is sending the atom to  the
>> specified position, and whether it is correct...
>>
>> We also need the output/log to say more.
>>
>> cheers,
>>
>> Matthieu
>>
>> On Mon, Sep 21, 2009 at 10:44 AM, Marc Sämann
>> <marc.saemann@ipe.uni-stuttgart.de> wrote:
>>
>>> Dear abinit users and developers,
>>>
>>> I am trying to do a structural optimization of a 3x3x2 zinc oxide
>>> supercell with 72 atoms.
>>> The optimization works fine with a 4 atom unit cell and a 2x2x1 supercell.
>>> But with larger cells I get a lot of the following warnings:
>>>
>>> symatm : WARNING -
>>>  Trouble finding symmetrically equivalent atoms
>>>  Applying inv of symm number  2 to atom number  19  of typat  1
>>>  gives tratom=  2.2222E-01  1.1111E-01 -5.5511E-17.
>>>  This is further away from every atom in crystal than the allowed
>>> tolerance.
>>>  The inverse symmetry matrix is  0 -1  0
>>>                                  1  1  0
>>>                                  0  0  1
>>>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000
>>> 0.5000000
>>>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>>>  for indsym(nearest atom)=    1
>>>
>>>
>>> My input file is the following:
>>>
>>> #ZnO wurzite (hexagonal) structure
>>> #Structural optimization run
>>>
>>> #Datasets: convergence on ecut
>>>  ndtset 2
>>>
>>> # Set 1 : Internal coordinate optimization
>>>
>>>  ionmov1  2        # Use BFGS algorithm for structural optimization
>>>  ntime1   20        # Maximum number of optimization steps
>>>  tolmxf1  1.0e-6  # Optimization is converged when maximum force
>>>                           # (Hartree/Bohr) is less than this maximum
>>>  natfix1  3 6        # Fix the position of two symmetry-equivalent atoms
>>>                           # in doing the structural optimization
>>>  iatfix1   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
>>>              19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
>>>
>>> # Set 2 : Lattice parameter relaxation (including re-optimization of
>>> #         internal coordinates)
>>>
>>>  dilatmx2  1.20    # Maximum scaling allowed for lattice parameters
>>>  getxred2  -1      # Start with relaxed coordinates from dataset 1
>>>  getwfk2   -1      # Start with wave functions from dataset 1
>>>  ionmov2   2       # Use BFGS algorithm
>>>  ntime2    24      # Maximum number of optimization steps
>>>  optcell2  2       # Fully optimize unit cell geometry, keeping symmetry
>>>  tolmxf2   1.0e-6  # Convergence limit for forces as above
>>>  strfact2  100     # Test convergence of stresses (Hartree/bohr^3) by
>>>                    # multiplying by this factor and applying force
>>>                    # convergence test
>>>  natfix2   36      # Fix the position of two symmetry-equivalent atoms
>>>                    # in doing the structural optimization
>>>  iatfix2   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
>>>            19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
>>>
>>> #Common input data
>>>
>>> #Starting approximation for the unit cell
>>>  acell   2*18.72 20.24        #3x3x2 unit cell
>>>  angdeg  90 90 120
>>>  spgroup 186
>>>  brvltt  -1
>>>  chkprim 1
>>>
>>> #Definition of the atom types and atoms
>>>  ntypat  2
>>>  znucl   30 8
>>>  natom   72
>>>  typat   36*1 36*2
>>>  xred    1/9  2/9  0
>>>          4/9  2/9  0
>>>          7/9  2/9  0
>>>          1/9  5/9  0
>>>          4/9  5/9  0
>>>          7/9  5/9  0
>>>          1/9  8/9  0
>>>          4/9  8/9  0
>>>          7/9  8/9  0
>>>          2/9  1/9  1/4
>>>          5/9  1/9  1/4
>>>          8/9  1/9  1/4
>>>          2/9  4/9  1/4
>>>          5/9  4/9  1/4
>>>          8/9  4/9  1/4
>>>          2/9  7/9  1/4
>>>          5/9  7/9  1/4
>>>          8/9  7/9  1/4
>>>          1/9  2/9  1/2
>>>          4/9  2/9  1/2
>>>          7/9  2/9  1/2
>>>          1/9  5/9  1/2
>>>          4/9  5/9  1/2
>>>          7/9  5/9  1/2
>>>          1/9  8/9  1/2
>>>          4/9  8/9  1/2
>>>          7/9  8/9  1/2
>>>          2/9  1/9  3/4
>>>          5/9  1/9  3/4
>>>          8/9  1/9  3/4
>>>          2/9  4/9  3/4
>>>          5/9  4/9  3/4
>>>          8/9  4/9  3/4
>>>          2/9  7/9  3/4
>>>          5/9  7/9  3/4
>>>          8/9  7/9  3/4
>>>          1/9  2/9  0.189
>>>          4/9  2/9  0.189
>>>          7/9  2/9  0.189
>>>          1/9  5/9  0.189
>>>          4/9  5/9  0.189
>>>          7/9  5/9  0.189
>>>          1/9  8/9  0.189
>>>          4/9  8/9  0.189
>>>          7/9  8/9  0.189
>>>          1/9  2/9  0.689
>>>          4/9  2/9  0.689
>>>          7/9  2/9  0.689
>>>          1/9  5/9  0.689
>>>          4/9  5/9  0.689
>>>          7/9  5/9  0.689
>>>          1/9  8/9  0.689
>>>          4/9  8/9  0.689
>>>          7/9  8/9  0.689
>>>          2/9  1/9  0.439
>>>          5/9  1/9  0.439
>>>          8/9  1/9  0.439
>>>          2/9  4/9  0.439
>>>          5/9  4/9  0.439
>>>          8/9  4/9  0.439
>>>          2/9  7/9  0.439
>>>          5/9  7/9  0.439
>>>          8/9  7/9  0.439
>>>          2/9  1/9  0.939
>>>          5/9  1/9  0.939
>>>          8/9  1/9  0.939
>>>          2/9  4/9  0.939
>>>          5/9  4/9  0.939
>>>          8/9  4/9  0.939
>>>          2/9  7/9  0.939
>>>          5/9  7/9  0.939
>>>          8/9  7/9  0.939
>>>
>>> #Definition of the plane wave basis set
>>>  ecut      20.0        # Maximum kinetic energy cutoff (Hartree)
>>>  ecutsm    1/2         # Smoothing energy needed for lattice paramete
>>>  pawecutdg 40          # optimization.  This will be retained for
>>>                        # consistency throughout.
>>>
>>> #Definition of the k-point grid
>>>  ngkpt   4 4 4          # 4x4x4 Monkhorst-Pack grid
>>>  nshiftk   1            # Use one copy of grid only (default)
>>>  shiftk   0.0 0.0 1/2   # This choice of origin for the k point grid
>>>                         # preserves the hexagonal symmetry of the grid,
>>>                         # which would be broken by the default choice.
>>>
>>> #Definition of the self-consistency procedure
>>>  diemac   9.0           # Model dielectric preconditioner
>>>  nstep   40             # Maxiumum number of SCF iterations
>>>  tolvrs   1.0d-18       # Strict tolerance on (squared) residual of the
>>>                         # SCF potential needed for accurate forces and
>>>                         # stresses in the structural optimization, and
>>>                         # accurate wave functions in the RF calculations
>>>
>>>
>>> Any help or comments are very appreciated.
>>>
>>> Kind regards,
>>> Marc Saemann
>>>
>>>
>>>
>>
>>
>>
>>
>
> --
> ------------------------------------------------------------------------
> Dipl.-Ing. Marc Saemann
>
> Universitaet Stuttgart
> Institut fuer Physikalische Elektronik ipe
> Pfaffenwaldring 47
> 70569 Stuttgart
> Germany
>
> room: 0.215
>
> phone: +49-711-685-67142
> fax:   +49-711-685-67138
>
> email: marc.saemann@ipe.uni-stuttgart.de
>
>
>
>
> #ZnO wurzite (hexagonal) structure
> #Structural optimization run
>
> #Datasets: convergence on ecut
>  ndtset 2
>
>
> # Set 1 : Internal coordinate optimization
>
>  ionmov1   2       # Use BFGS algorithm for structural optimization
>  ntime1   20      # Maximum number of optimization steps
>  tolmxf1   1.0e-6  # Optimization is converged when maximum force
>                   # (Hartree/Bohr) is less than this maximum
>
> # Set 2 : Lattice parameter relaxation (including re-optimization of
> #         internal coordinates)
>
>  dilatmx2   1.20    # Maximum scaling allowed for lattice parameters
>  getxred2   -1      # Start with relaxed coordinates from dataset 1
>  getwfk2   -1      # Start with wave functions from dataset 1
>  ionmov2   2       # Use BFGS algorithm
>  ntime2   24      # Maximum number of optimization steps
>  optcell2   2       # Fully optimize unit cell geometry, keeping symmetry
>  tolmxf2   1.0e-6  # Convergence limit for forces as above
>  strfact2   100     # Test convergence of stresses (Hartree/bohr^3) by
>                    # multiplying by this factor and applying force
>                    # convergence test
>
> #Common input data
>
> #Starting approximation for the unit cell
>  acell   2*18.72 20.24        #3x3x2 unit cell
>  angdeg 90 90 120
>
> #  rprim  0.866025403784438 0.5 0.0
> #        -0.866025403784438 0.5 0.0
> #         0.0 0.0 1.0
>
>  spgroup 186
> #  spgaxor 1
> #  brvltt -1
>  chkprim 0
>
> #Definition of the atom types and atoms
>  ntypat   2
>  znucl   30 8
>  natom   72
>  typat   9*1 9*2 9*1 9*2 9*1 9*2 9*1 9*2
>
>      xred    1/9  2/9  0
>              4/9  2/9  0
>              7/9  2/9  0
>              1/9  5/9  0
>              4/9  5/9  0
>              7/9  5/9  0
>              1/9  8/9  0
>              4/9  8/9  0
>              7/9  8/9  0
>              1/9  2/9  0.188130773415
>              4/9  2/9  0.188130773415
>              7/9  2/9  0.188130773415
>              1/9  5/9  0.188130773415
>              4/9  5/9  0.188130773415
>              7/9  5/9  0.188130773415
>              1/9  8/9  0.188130773415
>              4/9  8/9  0.188130773415
>              7/9  8/9  0.188130773415
>              2/9  1/9  1/4
>              5/9  1/9  1/4
>              8/9  1/9  1/4
>              2/9  4/9  1/4
>              5/9  4/9  1/4
>              8/9  4/9  1/4
>              2/9  7/9  1/4
>              5/9  7/9  1/4
>              8/9  7/9  1/4
>              2/9  1/9  0.438130773415
>              5/9  1/9  0.438130773415
>              8/9  1/9  0.438130773415
>              2/9  4/9  0.438130773415
>              5/9  4/9  0.438130773415
>              8/9  4/9  0.438130773415
>              2/9  7/9  0.438130773415
>              5/9  7/9  0.438130773415
>              8/9  7/9  0.438130773415
>              1/9  2/9  1/2
>              4/9  2/9  1/2
>              7/9  2/9  1/2
>              1/9  5/9  1/2
>              4/9  5/9  1/2
>              7/9  5/9  1/2
>              1/9  8/9  1/2
>              4/9  8/9  1/2
>              7/9  8/9  1/2
>              1/9  2/9  0.688130773415
>              4/9  2/9  0.688130773415
>              7/9  2/9  0.688130773415
>              1/9  5/9  0.688130773415
>              4/9  5/9  0.688130773415
>              7/9  5/9  0.688130773415
>              1/9  8/9  0.688130773415
>              4/9  8/9  0.688130773415
>              7/9  8/9  0.688130773415
>              2/9  1/9  3/4
>              5/9  1/9  3/4
>              8/9  1/9  3/4
>              2/9  4/9  3/4
>              5/9  4/9  3/4
>              8/9  4/9  3/4
>              2/9  7/9  3/4
>              5/9  7/9  3/4
>              8/9  7/9  3/4
>              2/9  1/9  0.938130773415
>              5/9  1/9  0.938130773415
>              8/9  1/9  0.938130773415
>              2/9  4/9  0.938130773415
>              5/9  4/9  0.938130773415
>              8/9  4/9  0.938130773415
>              2/9  7/9  0.938130773415
>              5/9  7/9  0.938130773415
>              8/9  7/9  0.938130773415
>
> #Definition of the plane wave basis set
>  ecut   20.0           # Maximum kinetic energy cutoff (Hartree)
>  ecutsm   1/2          # Smoothing energy needed for lattice paramete
>  pawecutdg 40           # optimization.  This will be retained for
>                         # consistency throughout.
>
> #Definition of the k-point grid
>  ngkpt   4 4 4          # 4x4x4 Monkhorst-Pack grid
>  nshiftk   1            # Use one copy of grid only (default)
>  shiftk   0.0 0.0 1/2   # This choice of origin for the k point grid
>                         # preserves the hexagonal symmetry of the grid,
>                         # which would be broken by the default choice.
>
> #Definition of the self-consistency procedure
>  diemac   9.0           # Model dielectric preconditioner
>  nstep   40             # Maxiumum number of SCF iterations
>  tolvrs   1.0d-18       # Strict tolerance on (squared) residual of the
>                         # SCF potential needed for accurate forces and
>                         # stresses in the structural optimization, and
>                         # accurate wave functions in the RF calculations
>
>
> .Version 5.8.4  of ABINIT
> .(MPI version, prepared for a x86_64_linux_intel11.1 computer)
>
> .Copyright (C) 1998-2009 ABINIT group .
>  ABINIT comes with ABSOLUTELY NO WARRANTY.
>  It is free software, and you are welcome to redistribute it
>  under certain conditions (GNU General Public License,
>  see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
>
>  ABINIT is a project of the Universite Catholique de Louvain,
>  Corning Inc. and other collaborators, see
> ~abinit/doc/developers/contributors.txt .
>  Please read ~abinit/doc/users/acknowledgments.html for suggested
>  acknowledgments of the ABINIT effort.
>  For more information, see http://www.abinit.org .
>
> .Starting date : Mon 21 Sep 2009.
>
> - input  file    -> tpaw_3.in
> - output file    -> tpaw_3.out
> - root for input  files -> tpaw_3i
> - root for output files -> tpaw_3o
>
>
>  DATASET    1 : space group P6_3 m c (#186); Bravais hP (primitive hexag.)
> ================================================================================
>  Values of the parameters that define the memory need for DATASET  1.
>   intxc =         0  ionmov =         2    iscf =        17 xclevel =      
>   2
>  lmnmax =        18   lnmax =         6   mband =       333  mffmem =      
>   1
> P  mgfft =        90   mkmem =         2 mpssoang=         3     mpw =    
> 26259
>  mqgrid =      3001   natom =        72    nfft =    576000    nkpt =      
>   8
>  nloalg =         4  nspden =         1 nspinor =         1  nsppol =      
>   1
>    nsym =        12  n1xccc =         1  ntypat =         2  occopt =      
>   1
>  PAW method is used; the additional fine FFT grid is defined by:
>   mgfftf=       120    nfftf =   1399680
> ================================================================================
> P This job should need less than                    1200.360 Mbytes of
> memory.
>  Rough estimation (10% accuracy) of disk space for files :
>  WF disk file :   1067.415 Mbytes ; DEN or POT disk file :     10.681
> Mbytes.
> ================================================================================
>
>
>  DATASET    2 : space group P6_3 m c (#186); Bravais hP (primitive hexag.)
> ================================================================================
>  Values of the parameters that define the memory need for DATASET  2.
>   intxc =         0  ionmov =         2    iscf =        17 xclevel =      
>   2
>  lmnmax =        18   lnmax =         6   mband =       333  mffmem =      
>   1
> P  mgfft =       100   mkmem =         2 mpssoang=         3     mpw =    
> 45391
>  mqgrid =      3001   natom =        72    nfft =    921600    nkpt =      
>   8
>  nloalg =         4  nspden =         1 nspinor =         1  nsppol =      
>   1
>    nsym =        12  n1xccc =         1  ntypat =         2  occopt =      
>   1
>  PAW method is used; the additional fine FFT grid is defined by:
>   mgfftf=       144    nfftf =   2359296
> ================================================================================
> P This job should need less than                    2006.183 Mbytes of
> memory.
>  Rough estimation (10% accuracy) of disk space for files :
>  WF disk file :   1845.120 Mbytes ; DEN or POT disk file :     18.002
> Mbytes.
> ================================================================================
>
>  -outvars: echo values of preprocessed input variables --------
>     acell    1.8720000000E+01  1.8720000000E+01  2.0240000000E+01 Bohr
>       amu    6.53900000E+01  1.59994000E+01
>    diemac    9.00000000E+00
>   dilatmx1   1.00000000E+00
>   dilatmx2   1.20000000E+00
>      ecut    2.00000000E+01 Hartree
>    ecutsm    5.00000000E-01 Hartree
>    getwfk1        0
>    getwfk2       -1
>   getxred1        0
>   getxred2       -1
>    ionmov         2
>       ixc        11
>    jdtset      1    2
>       kpt    0.00000000E+00  0.00000000E+00  1.25000000E-01
>              2.50000000E-01  0.00000000E+00  1.25000000E-01
>              5.00000000E-01  0.00000000E+00  1.25000000E-01
>              2.50000000E-01  2.50000000E-01  1.25000000E-01
>              0.00000000E+00  0.00000000E+00  3.75000000E-01
>              2.50000000E-01  0.00000000E+00  3.75000000E-01
>              5.00000000E-01  0.00000000E+00  3.75000000E-01
>              2.50000000E-01  2.50000000E-01  3.75000000E-01
>   kptrlen    7.48800000E+01
>  kptrlatt    4  0  0   0  4  0   0  0  4
> P    mkmem         2
>     natom        72
>     nband       333
>    ndtset         2
>     ngfft1       80      80      90
>     ngfft2       96      96     100
>   ngfftdg1      108     108     120
>   ngfftdg2      128     128     144
>      nkpt         8
>     nstep        40
>      nsym        12
>     ntime1       20
>     ntime2       24
>    ntypat         2
>       occ    2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
>              0.000000  0.000000  0.000000
>   optcell1        0
>   optcell2        2
>  pawecutdg    4.00000000E+01 Hartree
>     rprim    1.0000000000E+00  0.0000000000E+00  0.0000000000E+00
>             -5.0000000000E-01  8.6602540378E-01  0.0000000000E+00
>              0.0000000000E+00  0.0000000000E+00  1.0000000000E+00
>    shiftk    0.00000000E+00  0.00000000E+00  5.00000000E-01
>   spgroup       186
>    symrel    1  0  0   0  1  0   0  0  1       1  1  0  -1  0  0   0  0  1
>              0  1  0   1  0  0   0  0  1       0  1  0  -1 -1  0   0  0  1
>             -1  0  0   1  1  0   0  0  1       1  1  0   0 -1  0   0  0  1
>             -1  0  0   0 -1  0   0  0  1      -1 -1  0   0  1  0   0  0  1
>              1  0  0  -1 -1  0   0  0  1       0 -1  0   1  1  0   0  0  1
>             -1 -1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0  1
>     tnons    0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.0000000
>              0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.0000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.0000000
>    tolmxf    1.00000000E-06
>    tolvrs    1.00000000E-18
>     typat    1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1
>              1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1  1  1
>              1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1  1  1  1  1
>              1  1  1  2  2  2  2  2  2  2  2  2
>    useylm         1
>       wtk      0.03125    0.18750    0.09375    0.18750    0.03125    
> 0.18750
>                0.09375    0.18750
>    xangst    2.3500188843E-16  1.9064485679E+00  0.0000000000E+00
>              3.3020657816E+00  1.9064485679E+00  0.0000000000E+00
>              6.6041315632E+00  1.9064485679E+00  0.0000000000E+00
>             -1.6510328908E+00  4.7661214197E+00  0.0000000000E+00
>              1.6510328908E+00  4.7661214197E+00  0.0000000000E+00
>              4.9530986724E+00  4.7661214197E+00  0.0000000000E+00
>             -3.3020657816E+00  7.6257942716E+00  0.0000000000E+00
>              9.4000755373E-16  7.6257942716E+00  0.0000000000E+00
>              3.3020657816E+00  7.6257942716E+00  0.0000000000E+00
>              3.5838403912E-16  1.9064485679E+00  2.0149834347E+00
>              3.3020657816E+00  1.9064485679E+00  2.0149834347E+00
>              6.6041315632E+00  1.9064485679E+00  2.0149834347E+00
>             -1.6510328908E+00  4.7661214197E+00  2.0149834347E+00
>              1.6510328908E+00  4.7661214197E+00  2.0149834347E+00
>              4.9530986724E+00  4.7661214197E+00  2.0149834347E+00
>             -3.3020657816E+00  7.6257942716E+00  2.0149834347E+00
>              1.0633897044E-15  7.6257942716E+00  2.0149834347E+00
>              3.3020657816E+00  7.6257942716E+00  2.0149834347E+00
>              1.6510328908E+00  9.5322428394E-01  2.6776366755E+00
>              4.9530986724E+00  9.5322428394E-01  2.6776366755E+00
>              8.2551644540E+00  9.5322428394E-01  2.6776366755E+00
>              6.3396173606E-16  3.8128971358E+00  2.6776366755E+00
>              3.3020657816E+00  3.8128971358E+00  2.6776366755E+00
>              6.6041315632E+00  3.8128971358E+00  2.6776366755E+00
>             -1.6510328908E+00  6.6725699876E+00  2.6776366755E+00
>              1.6510328908E+00  6.6725699876E+00  2.6776366755E+00
>              4.9530986724E+00  6.6725699876E+00  2.6776366755E+00
>              1.6510328908E+00  9.5322428394E-01  4.6926201102E+00
>              4.9530986724E+00  9.5322428394E-01  4.6926201102E+00
>              8.2551644540E+00  9.5322428394E-01  4.6926201102E+00
>              7.5734388674E-16  3.8128971358E+00  4.6926201102E+00
>              3.3020657816E+00  3.8128971358E+00  4.6926201102E+00
>              6.6041315632E+00  3.8128971358E+00  4.6926201102E+00
>             -1.6510328908E+00  6.6725699876E+00  4.6926201102E+00
>              1.6510328908E+00  6.6725699876E+00  4.6926201102E+00
>              4.9530986724E+00  6.6725699876E+00  4.6926201102E+00
>              3.2791591839E-16  1.9064485679E+00  5.3552733509E+00
>              3.3020657816E+00  1.9064485679E+00  5.3552733509E+00
>              6.6041315632E+00  1.9064485679E+00  5.3552733509E+00
>             -1.6510328908E+00  4.7661214197E+00  5.3552733509E+00
>              1.6510328908E+00  4.7661214197E+00  5.3552733509E+00
>              4.9530986724E+00  4.7661214197E+00  5.3552733509E+00
>             -3.3020657816E+00  7.6257942716E+00  5.3552733509E+00
>              1.2679234721E-15  7.6257942716E+00  5.3552733509E+00
>              3.3020657816E+00  7.6257942716E+00  5.3552733509E+00
>              4.5129806907E-16  1.9064485679E+00  7.3702567856E+00
>              3.3020657816E+00  1.9064485679E+00  7.3702567856E+00
>              6.6041315632E+00  1.9064485679E+00  7.3702567856E+00
>             -1.6510328908E+00  4.7661214197E+00  7.3702567856E+00
>              1.6510328908E+00  4.7661214197E+00  7.3702567856E+00
>              4.9530986724E+00  4.7661214197E+00  7.3702567856E+00
>             -3.3020657816E+00  7.6257942716E+00  7.3702567856E+00
>              1.3913056228E-15  7.6257942716E+00  7.3702567856E+00
>              3.3020657816E+00  7.6257942716E+00  7.3702567856E+00
>              1.6510328908E+00  9.5322428394E-01  8.0329100264E+00
>              4.9530986724E+00  9.5322428394E-01  8.0329100264E+00
>              8.2551644540E+00  9.5322428394E-01  8.0329100264E+00
>              4.9187387758E-16  3.8128971358E+00  8.0329100264E+00
>              3.3020657816E+00  3.8128971358E+00  8.0329100264E+00
>              6.6041315632E+00  3.8128971358E+00  8.0329100264E+00
>             -1.6510328908E+00  6.6725699876E+00  8.0329100264E+00
>              1.6510328908E+00  6.6725699876E+00  8.0329100264E+00
>              4.9530986724E+00  6.6725699876E+00  8.0329100264E+00
>              1.6510328908E+00  9.5322428394E-01  1.0047893461E+01
>              4.9530986724E+00  9.5322428394E-01  1.0047893461E+01
>              8.2551644540E+00  9.5322428394E-01  1.0047893461E+01
>              1.0852598051E-15  3.8128971358E+00  1.0047893461E+01
>              3.3020657816E+00  3.8128971358E+00  1.0047893461E+01
>              6.6041315632E+00  3.8128971358E+00  1.0047893461E+01
>             -1.6510328908E+00  6.6725699876E+00  1.0047893461E+01
>              1.6510328908E+00  6.6725699876E+00  1.0047893461E+01
>              4.9530986724E+00  6.6725699876E+00  1.0047893461E+01
>     xcart    4.4408920985E-16  3.6026656797E+00  0.0000000000E+00
>              6.2400000000E+00  3.6026656797E+00  0.0000000000E+00
>              1.2480000000E+01  3.6026656797E+00  0.0000000000E+00
>             -3.1200000000E+00  9.0066641994E+00  0.0000000000E+00
>              3.1200000000E+00  9.0066641994E+00  0.0000000000E+00
>              9.3600000000E+00  9.0066641994E+00  0.0000000000E+00
>             -6.2400000000E+00  1.4410662719E+01  0.0000000000E+00
>              1.7763568394E-15  1.4410662719E+01  0.0000000000E+00
>              6.2400000000E+00  1.4410662719E+01  0.0000000000E+00
>              6.7724768433E-16  3.6026656797E+00  3.8077668539E+00
>              6.2400000000E+00  3.6026656797E+00  3.8077668539E+00
>              1.2480000000E+01  3.6026656797E+00  3.8077668539E+00
>             -3.1200000000E+00  9.0066641994E+00  3.8077668539E+00
>              3.1200000000E+00  9.0066641994E+00  3.8077668539E+00
>              9.3600000000E+00  9.0066641994E+00  3.8077668539E+00
>             -6.2400000000E+00  1.4410662719E+01  3.8077668539E+00
>              2.0095153139E-15  1.4410662719E+01  3.8077668539E+00
>              6.2400000000E+00  1.4410662719E+01  3.8077668539E+00
>              3.1200000000E+00  1.8013328399E+00  5.0600000000E+00
>              9.3600000000E+00  1.8013328399E+00  5.0600000000E+00
>              1.5600000000E+01  1.8013328399E+00  5.0600000000E+00
>              1.1980140599E-15  7.2053313595E+00  5.0600000000E+00
>              6.2400000000E+00  7.2053313595E+00  5.0600000000E+00
>              1.2480000000E+01  7.2053313595E+00  5.0600000000E+00
>             -3.1200000000E+00  1.2609329879E+01  5.0600000000E+00
>              3.1200000000E+00  1.2609329879E+01  5.0600000000E+00
>              9.3600000000E+00  1.2609329879E+01  5.0600000000E+00
>              3.1200000000E+00  1.8013328399E+00  8.8677668539E+00
>              9.3600000000E+00  1.8013328399E+00  8.8677668539E+00
>              1.5600000000E+01  1.8013328399E+00  8.8677668539E+00
>              1.4311725344E-15  7.2053313595E+00  8.8677668539E+00
>              6.2400000000E+00  7.2053313595E+00  8.8677668539E+00
>              1.2480000000E+01  7.2053313595E+00  8.8677668539E+00
>             -3.1200000000E+00  1.2609329879E+01  8.8677668539E+00
>              3.1200000000E+00  1.2609329879E+01  8.8677668539E+00
>              9.3600000000E+00  1.2609329879E+01  8.8677668539E+00
>              6.1967128037E-16  3.6026656797E+00  1.0120000000E+01
>              6.2400000000E+00  3.6026656797E+00  1.0120000000E+01
>              1.2480000000E+01  3.6026656797E+00  1.0120000000E+01
>             -3.1200000000E+00  9.0066641994E+00  1.0120000000E+01
>              3.1200000000E+00  9.0066641994E+00  1.0120000000E+01
>              9.3600000000E+00  9.0066641994E+00  1.0120000000E+01
>             -6.2400000000E+00  1.4410662719E+01  1.0120000000E+01
>              2.3960281198E-15  1.4410662719E+01  1.0120000000E+01
>              6.2400000000E+00  1.4410662719E+01  1.0120000000E+01
>              8.5282975485E-16  3.6026656797E+00  1.3927766854E+01
>              6.2400000000E+00  3.6026656797E+00  1.3927766854E+01
>              1.2480000000E+01  3.6026656797E+00  1.3927766854E+01
>             -3.1200000000E+00  9.0066641994E+00  1.3927766854E+01
>              3.1200000000E+00  9.0066641994E+00  1.3927766854E+01
>              9.3600000000E+00  9.0066641994E+00  1.3927766854E+01
>             -6.2400000000E+00  1.4410662719E+01  1.3927766854E+01
>              2.6291865942E-15  1.4410662719E+01  1.3927766854E+01
>              6.2400000000E+00  1.4410662719E+01  1.3927766854E+01
>              3.1200000000E+00  1.8013328399E+00  1.5180000000E+01
>              9.3600000000E+00  1.8013328399E+00  1.5180000000E+01
>              1.5600000000E+01  1.8013328399E+00  1.5180000000E+01
>              9.2950692055E-16  7.2053313595E+00  1.5180000000E+01
>              6.2400000000E+00  7.2053313595E+00  1.5180000000E+01
>              1.2480000000E+01  7.2053313595E+00  1.5180000000E+01
>             -3.1200000000E+00  1.2609329879E+01  1.5180000000E+01
>              3.1200000000E+00  1.2609329879E+01  1.5180000000E+01
>              9.3600000000E+00  1.2609329879E+01  1.5180000000E+01
>              3.1200000000E+00  1.8013328399E+00  1.8987766854E+01
>              9.3600000000E+00  1.8013328399E+00  1.8987766854E+01
>              1.5600000000E+01  1.8013328399E+00  1.8987766854E+01
>              2.0508438147E-15  7.2053313595E+00  1.8987766854E+01
>              6.2400000000E+00  7.2053313595E+00  1.8987766854E+01
>              1.2480000000E+01  7.2053313595E+00  1.8987766854E+01
>             -3.1200000000E+00  1.2609329879E+01  1.8987766854E+01
>              3.1200000000E+00  1.2609329879E+01  1.8987766854E+01
>              9.3600000000E+00  1.2609329879E+01  1.8987766854E+01
>      xred    1.1111111111E-01  2.2222222222E-01  0.0000000000E+00
>              4.4444444444E-01  2.2222222222E-01  0.0000000000E+00
>              7.7777777778E-01  2.2222222222E-01  0.0000000000E+00
>              1.1111111111E-01  5.5555555556E-01  0.0000000000E+00
>              4.4444444444E-01  5.5555555556E-01  0.0000000000E+00
>              7.7777777778E-01  5.5555555556E-01  0.0000000000E+00
>              1.1111111111E-01  8.8888888889E-01  0.0000000000E+00
>              4.4444444444E-01  8.8888888889E-01  0.0000000000E+00
>              7.7777777778E-01  8.8888888889E-01  0.0000000000E+00
>              1.1111111111E-01  2.2222222222E-01  1.8813077341E-01
>              4.4444444444E-01  2.2222222222E-01  1.8813077341E-01
>              7.7777777778E-01  2.2222222222E-01  1.8813077341E-01
>              1.1111111111E-01  5.5555555556E-01  1.8813077341E-01
>              4.4444444444E-01  5.5555555556E-01  1.8813077341E-01
>              7.7777777778E-01  5.5555555556E-01  1.8813077341E-01
>              1.1111111111E-01  8.8888888889E-01  1.8813077341E-01
>              4.4444444444E-01  8.8888888889E-01  1.8813077341E-01
>              7.7777777778E-01  8.8888888889E-01  1.8813077341E-01
>              2.2222222222E-01  1.1111111111E-01  2.5000000000E-01
>              5.5555555556E-01  1.1111111111E-01  2.5000000000E-01
>              8.8888888889E-01  1.1111111111E-01  2.5000000000E-01
>              2.2222222222E-01  4.4444444444E-01  2.5000000000E-01
>              5.5555555556E-01  4.4444444444E-01  2.5000000000E-01
>              8.8888888889E-01  4.4444444444E-01  2.5000000000E-01
>              2.2222222222E-01  7.7777777778E-01  2.5000000000E-01
>              5.5555555556E-01  7.7777777778E-01  2.5000000000E-01
>              8.8888888889E-01  7.7777777778E-01  2.5000000000E-01
>              2.2222222222E-01  1.1111111111E-01  4.3813077341E-01
>              5.5555555556E-01  1.1111111111E-01  4.3813077341E-01
>              8.8888888889E-01  1.1111111111E-01  4.3813077341E-01
>              2.2222222222E-01  4.4444444444E-01  4.3813077341E-01
>              5.5555555556E-01  4.4444444444E-01  4.3813077341E-01
>              8.8888888889E-01  4.4444444444E-01  4.3813077341E-01
>              2.2222222222E-01  7.7777777778E-01  4.3813077341E-01
>              5.5555555556E-01  7.7777777778E-01  4.3813077341E-01
>              8.8888888889E-01  7.7777777778E-01  4.3813077341E-01
>              1.1111111111E-01  2.2222222222E-01  5.0000000000E-01
>              4.4444444444E-01  2.2222222222E-01  5.0000000000E-01
>              7.7777777778E-01  2.2222222222E-01  5.0000000000E-01
>              1.1111111111E-01  5.5555555556E-01  5.0000000000E-01
>              4.4444444444E-01  5.5555555556E-01  5.0000000000E-01
>              7.7777777778E-01  5.5555555556E-01  5.0000000000E-01
>              1.1111111111E-01  8.8888888889E-01  5.0000000000E-01
>              4.4444444444E-01  8.8888888889E-01  5.0000000000E-01
>              7.7777777778E-01  8.8888888889E-01  5.0000000000E-01
>              1.1111111111E-01  2.2222222222E-01  6.8813077341E-01
>              4.4444444444E-01  2.2222222222E-01  6.8813077341E-01
>              7.7777777778E-01  2.2222222222E-01  6.8813077341E-01
>              1.1111111111E-01  5.5555555556E-01  6.8813077341E-01
>              4.4444444444E-01  5.5555555556E-01  6.8813077341E-01
>              7.7777777778E-01  5.5555555556E-01  6.8813077341E-01
>              1.1111111111E-01  8.8888888889E-01  6.8813077341E-01
>              4.4444444444E-01  8.8888888889E-01  6.8813077341E-01
>              7.7777777778E-01  8.8888888889E-01  6.8813077341E-01
>              2.2222222222E-01  1.1111111111E-01  7.5000000000E-01
>              5.5555555556E-01  1.1111111111E-01  7.5000000000E-01
>              8.8888888889E-01  1.1111111111E-01  7.5000000000E-01
>              2.2222222222E-01  4.4444444444E-01  7.5000000000E-01
>              5.5555555556E-01  4.4444444444E-01  7.5000000000E-01
>              8.8888888889E-01  4.4444444444E-01  7.5000000000E-01
>              2.2222222222E-01  7.7777777778E-01  7.5000000000E-01
>              5.5555555556E-01  7.7777777778E-01  7.5000000000E-01
>              8.8888888889E-01  7.7777777778E-01  7.5000000000E-01
>              2.2222222222E-01  1.1111111111E-01  9.3813077341E-01
>              5.5555555556E-01  1.1111111111E-01  9.3813077341E-01
>              8.8888888889E-01  1.1111111111E-01  9.3813077341E-01
>              2.2222222222E-01  4.4444444444E-01  9.3813077341E-01
>              5.5555555556E-01  4.4444444444E-01  9.3813077341E-01
>              8.8888888889E-01  4.4444444444E-01  9.3813077341E-01
>              2.2222222222E-01  7.7777777778E-01  9.3813077341E-01
>              5.5555555556E-01  7.7777777778E-01  9.3813077341E-01
>              8.8888888889E-01  7.7777777778E-01  9.3813077341E-01
>     znucl     30.00000    8.00000
>
> ================================================================================
>
>  chkinp: Checking input parameters for consistency, jdtset= 1.
>
>  chkinp: Checking input parameters for consistency, jdtset= 2.
>
> ================================================================================
> == DATASET  1
> ==================================================================
>
>  Real(R)+Recip(G) space primitive vectors, cartesian coordinates
> (Bohr,Bohr^-1):
>  R(1)= 18.7200000  0.0000000  0.0000000  G(1)=  0.0534188  0.0308414  
> 0.0000000
>  R(2)= -9.3600000 16.2119956  0.0000000  G(2)=  0.0000000  0.0616827  
> 0.0000000
>  R(3)=  0.0000000  0.0000000 20.2400000  G(3)=  0.0000000  0.0000000  
> 0.0494071
>  Unit cell volume ucvol=  6.1426084E+03 bohr^3
>  Angles (23,13,12)=  9.00000000E+01  9.00000000E+01  1.20000000E+02 degrees
>
>  Coarse grid specifications (used for wave-functions):
>
>  getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  80  80  90
>         ecut(hartree)=     20.000   => boxcut(ratio)=   2.12278
>
>  Fine grid specifications (used for densities):
>
>  getcut: wavevector=  0.0000  0.0000  0.0000  ngfft= 108 108 120
>         ecut(hartree)=     40.000   => boxcut(ratio)=   2.02639
>
> --- Pseudopotential description
> ------------------------------------------------
> - pspini: atom type   1  psp file is zn_ps.abinit.paw
> - pspatm: opening atomic psp file    zn_ps.abinit.paw
>  zinc - PAW data extracted from US-psp (D.Vanderbilt) - generated by
> USpp2Abinit v2.3.0
>  30.00000  12.00000  20090106                znucl, zion, pspdat
>    7   11    2    0       602   0.00000      
> pspcod,pspxc,lmax,lloc,mmax,r2well
>  Pseudopotential format is: paw4
>  basis_size (lnmax)=  6 (lmn_size= 18), orbitals=   0   0   1   1   2   2
>  Spheres core radius: rc_sph= 2.01467224
>  5 radial meshes are used:
>  - mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 602 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 598 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 643 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 691 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size= 702 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  Shapefunction is BESSEL type:
> shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
>  Radius for shape functions = sphere core radius
>  Radial grid used for partial waves is grid 1
>  Radial grid used for projectors is grid 2
>  Radial grid used for (t)core density is grid 3
>  Radial grid used for Vloc is grid 4
>  Radial grid used for pseudo valence density is grid 5
>  pspatm: atomic psp has been read  and splines computed
>
> - pspini: atom type   2  psp file is o_ps.abinit.paw
> - pspatm: opening atomic psp file    o_ps.abinit.paw
>  oxygen - PAW data extracted from US-psp (D.Vanderbilt) - generated by
> USpp2Abinit v2.3.0
>   8.00000   6.00000  20090106                znucl, zion, pspdat
>    7   11    1    0       489   0.00000      
> pspcod,pspxc,lmax,lloc,mmax,r2well
>  Pseudopotential format is: paw4
>  basis_size (lnmax)=  4 (lmn_size=  8), orbitals=   0   0   1   1
>  Spheres core radius: rc_sph= 1.11262345
>  5 radial meshes are used:
>  - mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 489 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 485 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 506 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 613 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size= 608 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  Shapefunction is BESSEL type:
> shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
>  Radius for shape functions = sphere core radius
>  Radial grid used for partial waves is grid 1
>  Radial grid used for projectors is grid 2
>  Radial grid used for (t)core density is grid 3
>  Radial grid used for Vloc is grid 4
>  Radial grid used for pseudo valence density is grid 5
>  pspatm: atomic psp has been read  and splines computed
>
>   6.72705995E+05                                ecore*ucvol(ha*bohr**3)
> --------------------------------------------------------------------------------
>
> P newkpt: treating    333 bands with npw=   26213 for ikpt=   1 by node    0
> P newkpt: treating    333 bands with npw=   26226 for ikpt=   2 by node    0
> P newkpt: treating    333 bands with npw=   26254 for ikpt=   3 by node    1
> P newkpt: treating    333 bands with npw=   26259 for ikpt=   4 by node    1
> P newkpt: treating    333 bands with npw=   26236 for ikpt=   5 by node    2
> P newkpt: treating    333 bands with npw=   26242 for ikpt=   6 by node    2
> P newkpt: treating    333 bands with npw=   26234 for ikpt=   7 by node    3
> P newkpt: treating    333 bands with npw=   26240 for ikpt=   8 by node    3
>
>  setup2: Arith. and geom. avg. npw (full set) are   26241.094   26241.091
>
>  ABINIT
>
>  Give name for formatted input file:
> tpaw_3.in
>  Give name for formatted output file:
> tpaw_3.out
>  Give root name for generic input files:
> tpaw_3i
>  Give root name for generic output files:
> tpaw_3o
>  Give root name for generic temporary files:
> tpaw_3
> -P-0000  leave_test : synchronization done...
> -P-0001  leave_test : synchronization done...
> -P-0002  leave_test : synchronization done...
> -P-0003  leave_test : synchronization done...
>
> .Version 5.8.4  of ABINIT
> .(MPI version, prepared for a x86_64_linux_intel11.1 computer)
>
> .Copyright (C) 1998-2009 ABINIT group .
>  ABINIT comes with ABSOLUTELY NO WARRANTY.
>  It is free software, and you are welcome to redistribute it
>  under certain conditions (GNU General Public License,
>  see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
>
>  ABINIT is a project of the Universite Catholique de Louvain,
>  Corning Inc. and other collaborators, see
> ~abinit/doc/developers/contributors.txt .
>  Please read ~abinit/doc/users/acknowledgments.html for suggested
>  acknowledgments of the ABINIT effort.
>  For more information, see http://www.abinit.org .
>
> .Starting date : Mon 21 Sep 2009.
>
>
>  
> ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
>
>  === Build Information ===
>  Version       : 5.8.4
>  Build target  : x86_64_linux_intel11.1
>  Build date    : 20090917
>
>  === Compiler Suite ===
>  C compiler       : gnu
>  CFLAGS           :  -g -O2
>  C++ compiler     : gnuicpc
>  CXXFLAGS         :  -g -O2
>  Fortran compiler : intel11.1
>  FCFLAGS          :  -g
>  FC_LDFLAGS       :
>
>  === Optimizations ===
>  Debug level        : symbols
>  Optimization level : standard
>  Architecture       : unknown_unknown
>
>  === MPI ===
>  Parallel build : yes
>  Parallel I/O   : no
>  MPI CPPFLAGS   : -DMPI=1 -DMPI2=1
>
>  === Linear algebra ===
>  Library type  : abinit
>  Use ScaLAPACK : no
>
>  === Plug-ins ===
>  BigDFT    : yes
>  ETSF I/O  : yes
>  LibXC     : yes
>  FoX       : no
>  NetCDF    : yes
>  Wannier90 : yes
>  XMLF90    : no
>
>  === Experimental features ===
>  Bindings            : no
>  Error handlers      : no
>  Exports             : no
>  GW double-precision : no
>  Macroave build      : yes
>
>  
> ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
>
> - input  file    -> tpaw_3.in
> - output file    -> tpaw_3.out
> - root for input  files -> tpaw_3i
> - root for output files -> tpaw_3o
>
>  instrng :   154 lines of input have been read
>
>  iofn2 : Please give name of formatted atomic psp file
>  iofn2 : for atom type   1 , psp file is zn_ps.abinit.paw
>  read the values zionpsp= 12.0 , pspcod=   7 , lmax=   2
>  3 0.                                   : shape_type,rshape
>
>
>  iofn2 : Please give name of formatted atomic psp file
>  iofn2 : for atom type   2 , psp file is o_ps.abinit.paw
>  read the values zionpsp=  6.0 , pspcod=   7 , lmax=   1
>  3 0.                                   : shape_type,rshape
>
>
>  iofn2 : deduce mpsang  =   3, n1xccc  =   1.
> -P-0000  leave_test : synchronization done...
>
>  invars1m : enter jdtset=     1
>
>  ingeo : use angdeg to generate rprim.
>  ingeo : takes atomic coordinates from input array xred
>  symspgr : the symmetry operation no.   1 is the identity
>  symaxes : the symmetry operation no.   2 is a 6_3-axis
>  symplanes : the symmetry operation no.   3 is a tertiary c plane
>  symaxes : the symmetry operation no.   4 is a 3-axis
>  symplanes : the symmetry operation no.   5 is a secondary m plane
>  symplanes : the symmetry operation no.   6 is a secondary m plane
>  symaxes : the symmetry operation no.   7 is a 2_1-axis
>  symplanes : the symmetry operation no.   8 is a tertiary c plane
>  symplanes : the symmetry operation no.   9 is a tertiary c plane
>  symaxes : the symmetry operation no.  10 is a 6_3-axis
>  symaxes : the symmetry operation no.  11 is a 3-axis
>  symplanes : the symmetry operation no.  12 is a secondary m plane
>  symspgr : spgroup= 186  P6_3 m c   (=C6v^4)
>  getkgrid : length of smallest supercell vector (bohr)=    7.488000E+01
>       Simple Lattice Grid
>  symkpt : found identity, with number  1
>  npfft, npband and npkpt           1           1           4
>  mpi_enreg%sizecart(1),np_fft           1           1
>  mpi_enreg%sizecart(2),np_band           1           1
>  mpi_enreg%sizecart(3),np_kpt           4           4
>  in initmpi_grid : me_fft, me_band, me_kpt are           0           0
>           0
>  invars1: mkmem  undefined in the input file. Use default mkmem  = nkpt
>  invars1: With nkpt_me=    2 and mkmem  =     8, ground state wf handled in
> core.
>  Resetting mkmem  to nkpt_me to save memory space.
>  invars1: mkqmem undefined in the input file. Use default mkqmem = nkpt
>  invars1: With nkpt_me=    2 and mkqmem =     8, ground state wf handled in
> core.
>  Resetting mkqmem to nkpt_me to save memory space.
>  invars1: mk1mem undefined in the input file. Use default mk1mem = nkpt
>  invars1: With nkpt_me=    2 and mk1mem =     8, ground state wf handled in
> core.
>  Resetting mk1mem to nkpt_me to save memory space.
>
>  invars1m : enter jdtset=     2
>
>  ingeo : use angdeg to generate rprim.
>  ingeo : takes atomic coordinates from input array xred
>  symspgr : the symmetry operation no.   1 is the identity
>  symaxes : the symmetry operation no.   2 is a 6_3-axis
>  symplanes : the symmetry operation no.   3 is a tertiary c plane
>  symaxes : the symmetry operation no.   4 is a 3-axis
>  symplanes : the symmetry operation no.   5 is a secondary m plane
>  symplanes : the symmetry operation no.   6 is a secondary m plane
>  symaxes : the symmetry operation no.   7 is a 2_1-axis
>  symplanes : the symmetry operation no.   8 is a tertiary c plane
>  symplanes : the symmetry operation no.   9 is a tertiary c plane
>  symaxes : the symmetry operation no.  10 is a 6_3-axis
>  symaxes : the symmetry operation no.  11 is a 3-axis
>  symplanes : the symmetry operation no.  12 is a secondary m plane
>  symspgr : spgroup= 186  P6_3 m c   (=C6v^4)
>  getkgrid : length of smallest supercell vector (bohr)=    7.488000E+01
>       Simple Lattice Grid
>  symkpt : found identity, with number  1
>  npfft, npband and npkpt           1           1           4
>  mpi_enreg%sizecart(1),np_fft           1           1
>  mpi_enreg%sizecart(2),np_band           1           1
>  mpi_enreg%sizecart(3),np_kpt           4           4
>  in initmpi_grid : me_fft, me_band, me_kpt are           0           0
>           0
>  invars1: mkmem  undefined in the input file. Use default mkmem  = nkpt
>  invars1: With nkpt_me=    2 and mkmem  =     8, ground state wf handled in
> core.
>  Resetting mkmem  to nkpt_me to save memory space.
>  invars1: mkqmem undefined in the input file. Use default mkqmem = nkpt
>  invars1: With nkpt_me=    2 and mkqmem =     8, ground state wf handled in
> core.
>  Resetting mkqmem to nkpt_me to save memory space.
>  invars1: mk1mem undefined in the input file. Use default mk1mem = nkpt
>  invars1: With nkpt_me=    2 and mk1mem =     8, ground state wf handled in
> core.
>  Resetting mk1mem to nkpt_me to save memory space.
>
>  DATASET    1 : space group P6_3 m c (#186); Bravais hP (primitive hexag.)
>  invars2: take the default value of fband=  1.25000000E-01
>  getkgrid : length of smallest supercell vector (bohr)=    7.488000E+01
>       Simple Lattice Grid
>  symkpt : found identity, with number  1
>
>  inkpts : istwfk preprocessed, gives following first values (max. 6): 1 1 1
> 1 1 1
>  chkneu : initialized the occupation numbers for occopt=    1
>    spin-unpolarized case :
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
>
>  getng is called for the coarse grid:
>  For input ecut=  2.000000E+01 best grid ngfft=      80      80      90
>       max ecut=  2.253087E+01
>  getng: value of mgfft=      90 and nfft=      576000
>  getng: values of ngfft(4),ngfft(5),ngfft(6)      81      81      90
>  getmpw: optimal value of mpw=   26259
>
>  getng is called for the fine grid:
>  For input ecut=  4.000000E+01 best grid ngfft=     108     108     120
>       max ecut=  4.106252E+01
>  getng: value of mgfft=     120 and nfft=     1399680
>  getng: values of ngfft(4),ngfft(5),ngfft(6)     109     109     120
>
>  getdim_nloc : deduce lmnmax  =  18, lnmax  =   6,
>                      lmnmaxso=  18, lnmaxso=   6.
>  memory : analysis of memory needs
> ================================================================================
>  Values of the parameters that define the memory need for DATASET  1.
>   intxc =         0  ionmov =         2    iscf =        17 xclevel =      
>   2
>  lmnmax =        18   lnmax =         6   mband =       333  mffmem =      
>   1
> P  mgfft =        90   mkmem =         2 mpssoang=         3     mpw =    
> 26259
>  mqgrid =      3001   natom =        72    nfft =    576000    nkpt =      
>   8
>  nloalg =         4  nspden =         1 nspinor =         1  nsppol =      
>   1
>    nsym =        12  n1xccc =         1  ntypat =         2  occopt =      
>   1
>  PAW method is used; the additional fine FFT grid is defined by:
>   mgfftf=       120    nfftf =   1399680
> ================================================================================
> P This job should need less than                    1200.360 Mbytes of
> memory.
>  Rough estimation (10% accuracy) of disk space for files :
>  WF disk file :   1067.415 Mbytes ; DEN or POT disk file :     10.681
> Mbytes.
> ================================================================================
>
>  Biggest array : cg(disk), with    266.8552 MBytes.
> -P-0000  leave_test : synchronization done...
>  memana : allocated an array of    266.855 Mbytes, for testing purposes.
>  memana : allocated    1200.360 Mbytes, for testing purposes.
>  The job will continue.
>
>  DATASET    2 : space group P6_3 m c (#186); Bravais hP (primitive hexag.)
>  invars2: take the default value of fband=  1.25000000E-01
>  getkgrid : length of smallest supercell vector (bohr)=    7.488000E+01
>       Simple Lattice Grid
>  symkpt : found identity, with number  1
>
>  inkpts : istwfk preprocessed, gives following first values (max. 6): 1 1 1
> 1 1 1
>  chkneu : initialized the occupation numbers for occopt=    1
>    spin-unpolarized case :
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00  2.00
>  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
>
>  getng is called for the coarse grid:
>  For input ecut=  2.880000E+01 best grid ngfft=      96      96     100
>       max ecut=  3.011541E+01
>  getng: value of mgfft=     100 and nfft=      921600
>  getng: values of ngfft(4),ngfft(5),ngfft(6)      97      97     100
>  getmpw: optimal value of mpw=   45391
>
>  getng is called for the fine grid:
>  For input ecut=  5.760000E+01 best grid ngfft=     128     128     144
>       max ecut=  5.767904E+01
>  getng: value of mgfft=     144 and nfft=     2359296
>  getng: values of ngfft(4),ngfft(5),ngfft(6)     129     129     144
>
>  getdim_nloc : deduce lmnmax  =  18, lnmax  =   6,
>                      lmnmaxso=  18, lnmaxso=   6.
>  memory : analysis of memory needs
> ================================================================================
>  Values of the parameters that define the memory need for DATASET  2.
>   intxc =         0  ionmov =         2    iscf =        17 xclevel =      
>   2
>  lmnmax =        18   lnmax =         6   mband =       333  mffmem =      
>   1
> P  mgfft =       100   mkmem =         2 mpssoang=         3     mpw =    
> 45391
>  mqgrid =      3001   natom =        72    nfft =    921600    nkpt =      
>   8
>  nloalg =         4  nspden =         1 nspinor =         1  nsppol =      
>   1
>    nsym =        12  n1xccc =         1  ntypat =         2  occopt =      
>   1
>  PAW method is used; the additional fine FFT grid is defined by:
>   mgfftf=       144    nfftf =   2359296
> ================================================================================
> P This job should need less than                    2006.183 Mbytes of
> memory.
>  Rough estimation (10% accuracy) of disk space for files :
>  WF disk file :   1845.120 Mbytes ; DEN or POT disk file :     18.002
> Mbytes.
> ================================================================================
>
>  Biggest array : cg(disk), with    461.2814 MBytes.
> -P-0000  leave_test : synchronization done...
>  memana : allocated an array of    461.281 Mbytes, for testing purposes.
>  memana : allocated    2006.183 Mbytes, for testing purposes.
>  The job will continue.
>  npband=            0           1
>  npband=            1           1
>  npband=            2           1
>  -outvars: echo values of preprocessed input variables --------
>  npband=            0           1
>  npband=            1           1
>  npband=            2           1
>     acell    1.8720000000E+01  1.8720000000E+01  2.0240000000E+01 Bohr
>       amu    6.53900000E+01  1.59994000E+01
>    diemac    9.00000000E+00
>   dilatmx1   1.00000000E+00
>   dilatmx2   1.20000000E+00
>      ecut    2.00000000E+01 Hartree
>    ecutsm    5.00000000E-01 Hartree
>    getwfk1        0
>    getwfk2       -1
>   getxred1        0
>   getxred2       -1
>    ionmov         2
>       ixc        11
>    jdtset      1    2
>       kpt    0.00000000E+00  0.00000000E+00  1.25000000E-01
>              2.50000000E-01  0.00000000E+00  1.25000000E-01
>              5.00000000E-01  0.00000000E+00  1.25000000E-01
>              2.50000000E-01  2.50000000E-01  1.25000000E-01
>              0.00000000E+00  0.00000000E+00  3.75000000E-01
>              2.50000000E-01  0.00000000E+00  3.75000000E-01
>              5.00000000E-01  0.00000000E+00  3.75000000E-01
>              2.50000000E-01  2.50000000E-01  3.75000000E-01
>   kptrlen    7.48800000E+01
>  kptrlatt    4  0  0   0  4  0   0  0  4
> P    mkmem         2
>     natom        72
>     nband       333
>    ndtset         2
>     ngfft1       80      80      90
>     ngfft2       96      96     100
>   ngfftdg1      108     108     120
>   ngfftdg2      128     128     144
>      nkpt         8
>     nstep        40
>      nsym        12
>     ntime1       20
>     ntime2       24
>    ntypat         2
>       occ    2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              2.000000  2.000000  2.000000  2.000000  2.000000  2.000000
>              0.000000  0.000000  0.000000  0.000000  0.000000  0.000000
>              0.000000  0.000000  0.000000
>   optcell1        0
>   optcell2        2
>  pawecutdg    4.00000000E+01 Hartree
>     rprim    1.0000000000E+00  0.0000000000E+00  0.0000000000E+00
>             -5.0000000000E-01  8.6602540378E-01  0.0000000000E+00
>              0.0000000000E+00  0.0000000000E+00  1.0000000000E+00
>    shiftk    0.00000000E+00  0.00000000E+00  5.00000000E-01
>   spgroup       186
>    symrel    1  0  0   0  1  0   0  0  1       1  1  0  -1  0  0   0  0  1
>              0  1  0   1  0  0   0  0  1       0  1  0  -1 -1  0   0  0  1
>             -1  0  0   1  1  0   0  0  1       1  1  0   0 -1  0   0  0  1
>             -1  0  0   0 -1  0   0  0  1      -1 -1  0   0  1  0   0  0  1
>              1  0  0  -1 -1  0   0  0  1       0 -1  0   1  1  0   0  0  1
>             -1 -1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0  1
>     tnons    0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.0000000
>              0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.0000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.5000000     0.0000000  0.0000000  
> 0.5000000
>              0.0000000  0.0000000  0.0000000     0.0000000  0.0000000  
> 0.0000000
>    tolmxf    1.00000000E-06
>    tolvrs    1.00000000E-18
>     typat    1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1
>              1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1  1  1
>              1  1  1  1  1  2  2  2  2  2  2  2  2  2  1  1  1  1  1  1
>              1  1  1  2  2  2  2  2  2  2  2  2
>    useylm         1
>       wtk      0.03125    0.18750    0.09375    0.18750    0.03125    
> 0.18750
>                0.09375    0.18750
>    xangst    2.3500188843E-16  1.9064485679E+00  0.0000000000E+00
>              3.3020657816E+00  1.9064485679E+00  0.0000000000E+00
>              6.6041315632E+00  1.9064485679E+00  0.0000000000E+00
>             -1.6510328908E+00  4.7661214197E+00  0.0000000000E+00
>              1.6510328908E+00  4.7661214197E+00  0.0000000000E+00
>              4.9530986724E+00  4.7661214197E+00  0.0000000000E+00
>             -3.3020657816E+00  7.6257942716E+00  0.0000000000E+00
>              9.4000755373E-16  7.6257942716E+00  0.0000000000E+00
>              3.3020657816E+00  7.6257942716E+00  0.0000000000E+00
>              3.5838403912E-16  1.9064485679E+00  2.0149834347E+00
>              3.3020657816E+00  1.9064485679E+00  2.0149834347E+00
>              6.6041315632E+00  1.9064485679E+00  2.0149834347E+00
>             -1.6510328908E+00  4.7661214197E+00  2.0149834347E+00
>              1.6510328908E+00  4.7661214197E+00  2.0149834347E+00
>              4.9530986724E+00  4.7661214197E+00  2.0149834347E+00
>             -3.3020657816E+00  7.6257942716E+00  2.0149834347E+00
>              1.0633897044E-15  7.6257942716E+00  2.0149834347E+00
>              3.3020657816E+00  7.6257942716E+00  2.0149834347E+00
>              1.6510328908E+00  9.5322428394E-01  2.6776366755E+00
>              4.9530986724E+00  9.5322428394E-01  2.6776366755E+00
>              8.2551644540E+00  9.5322428394E-01  2.6776366755E+00
>              6.3396173606E-16  3.8128971358E+00  2.6776366755E+00
>              3.3020657816E+00  3.8128971358E+00  2.6776366755E+00
>              6.6041315632E+00  3.8128971358E+00  2.6776366755E+00
>             -1.6510328908E+00  6.6725699876E+00  2.6776366755E+00
>              1.6510328908E+00  6.6725699876E+00  2.6776366755E+00
>              4.9530986724E+00  6.6725699876E+00  2.6776366755E+00
>              1.6510328908E+00  9.5322428394E-01  4.6926201102E+00
>              4.9530986724E+00  9.5322428394E-01  4.6926201102E+00
>              8.2551644540E+00  9.5322428394E-01  4.6926201102E+00
>              7.5734388674E-16  3.8128971358E+00  4.6926201102E+00
>              3.3020657816E+00  3.8128971358E+00  4.6926201102E+00
>              6.6041315632E+00  3.8128971358E+00  4.6926201102E+00
>             -1.6510328908E+00  6.6725699876E+00  4.6926201102E+00
>              1.6510328908E+00  6.6725699876E+00  4.6926201102E+00
>              4.9530986724E+00  6.6725699876E+00  4.6926201102E+00
>              3.2791591839E-16  1.9064485679E+00  5.3552733509E+00
>              3.3020657816E+00  1.9064485679E+00  5.3552733509E+00
>              6.6041315632E+00  1.9064485679E+00  5.3552733509E+00
>             -1.6510328908E+00  4.7661214197E+00  5.3552733509E+00
>              1.6510328908E+00  4.7661214197E+00  5.3552733509E+00
>              4.9530986724E+00  4.7661214197E+00  5.3552733509E+00
>             -3.3020657816E+00  7.6257942716E+00  5.3552733509E+00
>              1.2679234721E-15  7.6257942716E+00  5.3552733509E+00
>              3.3020657816E+00  7.6257942716E+00  5.3552733509E+00
>              4.5129806907E-16  1.9064485679E+00  7.3702567856E+00
>              3.3020657816E+00  1.9064485679E+00  7.3702567856E+00
>              6.6041315632E+00  1.9064485679E+00  7.3702567856E+00
>             -1.6510328908E+00  4.7661214197E+00  7.3702567856E+00
>              1.6510328908E+00  4.7661214197E+00  7.3702567856E+00
>              4.9530986724E+00  4.7661214197E+00  7.3702567856E+00
>             -3.3020657816E+00  7.6257942716E+00  7.3702567856E+00
>              1.3913056228E-15  7.6257942716E+00  7.3702567856E+00
>              3.3020657816E+00  7.6257942716E+00  7.3702567856E+00
>              1.6510328908E+00  9.5322428394E-01  8.0329100264E+00
>              4.9530986724E+00  9.5322428394E-01  8.0329100264E+00
>              8.2551644540E+00  9.5322428394E-01  8.0329100264E+00
>              4.9187387758E-16  3.8128971358E+00  8.0329100264E+00
>              3.3020657816E+00  3.8128971358E+00  8.0329100264E+00
>              6.6041315632E+00  3.8128971358E+00  8.0329100264E+00
>             -1.6510328908E+00  6.6725699876E+00  8.0329100264E+00
>              1.6510328908E+00  6.6725699876E+00  8.0329100264E+00
>              4.9530986724E+00  6.6725699876E+00  8.0329100264E+00
>              1.6510328908E+00  9.5322428394E-01  1.0047893461E+01
>              4.9530986724E+00  9.5322428394E-01  1.0047893461E+01
>              8.2551644540E+00  9.5322428394E-01  1.0047893461E+01
>              1.0852598051E-15  3.8128971358E+00  1.0047893461E+01
>              3.3020657816E+00  3.8128971358E+00  1.0047893461E+01
>              6.6041315632E+00  3.8128971358E+00  1.0047893461E+01
>             -1.6510328908E+00  6.6725699876E+00  1.0047893461E+01
>              1.6510328908E+00  6.6725699876E+00  1.0047893461E+01
>              4.9530986724E+00  6.6725699876E+00  1.0047893461E+01
>     xcart    4.4408920985E-16  3.6026656797E+00  0.0000000000E+00
>              6.2400000000E+00  3.6026656797E+00  0.0000000000E+00
>              1.2480000000E+01  3.6026656797E+00  0.0000000000E+00
>             -3.1200000000E+00  9.0066641994E+00  0.0000000000E+00
>              3.1200000000E+00  9.0066641994E+00  0.0000000000E+00
>              9.3600000000E+00  9.0066641994E+00  0.0000000000E+00
>             -6.2400000000E+00  1.4410662719E+01  0.0000000000E+00
>              1.7763568394E-15  1.4410662719E+01  0.0000000000E+00
>              6.2400000000E+00  1.4410662719E+01  0.0000000000E+00
>              6.7724768433E-16  3.6026656797E+00  3.8077668539E+00
>              6.2400000000E+00  3.6026656797E+00  3.8077668539E+00
>              1.2480000000E+01  3.6026656797E+00  3.8077668539E+00
>             -3.1200000000E+00  9.0066641994E+00  3.8077668539E+00
>              3.1200000000E+00  9.0066641994E+00  3.8077668539E+00
>              9.3600000000E+00  9.0066641994E+00  3.8077668539E+00
>             -6.2400000000E+00  1.4410662719E+01  3.8077668539E+00
>              2.0095153139E-15  1.4410662719E+01  3.8077668539E+00
>              6.2400000000E+00  1.4410662719E+01  3.8077668539E+00
>              3.1200000000E+00  1.8013328399E+00  5.0600000000E+00
>              9.3600000000E+00  1.8013328399E+00  5.0600000000E+00
>              1.5600000000E+01  1.8013328399E+00  5.0600000000E+00
>              1.1980140599E-15  7.2053313595E+00  5.0600000000E+00
>              6.2400000000E+00  7.2053313595E+00  5.0600000000E+00
>              1.2480000000E+01  7.2053313595E+00  5.0600000000E+00
>             -3.1200000000E+00  1.2609329879E+01  5.0600000000E+00
>              3.1200000000E+00  1.2609329879E+01  5.0600000000E+00
>              9.3600000000E+00  1.2609329879E+01  5.0600000000E+00
>              3.1200000000E+00  1.8013328399E+00  8.8677668539E+00
>              9.3600000000E+00  1.8013328399E+00  8.8677668539E+00
>              1.5600000000E+01  1.8013328399E+00  8.8677668539E+00
>              1.4311725344E-15  7.2053313595E+00  8.8677668539E+00
>              6.2400000000E+00  7.2053313595E+00  8.8677668539E+00
>              1.2480000000E+01  7.2053313595E+00  8.8677668539E+00
>             -3.1200000000E+00  1.2609329879E+01  8.8677668539E+00
>              3.1200000000E+00  1.2609329879E+01  8.8677668539E+00
>              9.3600000000E+00  1.2609329879E+01  8.8677668539E+00
>              6.1967128037E-16  3.6026656797E+00  1.0120000000E+01
>              6.2400000000E+00  3.6026656797E+00  1.0120000000E+01
>              1.2480000000E+01  3.6026656797E+00  1.0120000000E+01
>             -3.1200000000E+00  9.0066641994E+00  1.0120000000E+01
>              3.1200000000E+00  9.0066641994E+00  1.0120000000E+01
>              9.3600000000E+00  9.0066641994E+00  1.0120000000E+01
>             -6.2400000000E+00  1.4410662719E+01  1.0120000000E+01
>              2.3960281198E-15  1.4410662719E+01  1.0120000000E+01
>              6.2400000000E+00  1.4410662719E+01  1.0120000000E+01
>              8.5282975485E-16  3.6026656797E+00  1.3927766854E+01
>              6.2400000000E+00  3.6026656797E+00  1.3927766854E+01
>              1.2480000000E+01  3.6026656797E+00  1.3927766854E+01
>             -3.1200000000E+00  9.0066641994E+00  1.3927766854E+01
>              3.1200000000E+00  9.0066641994E+00  1.3927766854E+01
>              9.3600000000E+00  9.0066641994E+00  1.3927766854E+01
>             -6.2400000000E+00  1.4410662719E+01  1.3927766854E+01
>              2.6291865942E-15  1.4410662719E+01  1.3927766854E+01
>              6.2400000000E+00  1.4410662719E+01  1.3927766854E+01
>              3.1200000000E+00  1.8013328399E+00  1.5180000000E+01
>              9.3600000000E+00  1.8013328399E+00  1.5180000000E+01
>              1.5600000000E+01  1.8013328399E+00  1.5180000000E+01
>              9.2950692055E-16  7.2053313595E+00  1.5180000000E+01
>              6.2400000000E+00  7.2053313595E+00  1.5180000000E+01
>              1.2480000000E+01  7.2053313595E+00  1.5180000000E+01
>             -3.1200000000E+00  1.2609329879E+01  1.5180000000E+01
>              3.1200000000E+00  1.2609329879E+01  1.5180000000E+01
>              9.3600000000E+00  1.2609329879E+01  1.5180000000E+01
>              3.1200000000E+00  1.8013328399E+00  1.8987766854E+01
>              9.3600000000E+00  1.8013328399E+00  1.8987766854E+01
>              1.5600000000E+01  1.8013328399E+00  1.8987766854E+01
>              2.0508438147E-15  7.2053313595E+00  1.8987766854E+01
>              6.2400000000E+00  7.2053313595E+00  1.8987766854E+01
>              1.2480000000E+01  7.2053313595E+00  1.8987766854E+01
>             -3.1200000000E+00  1.2609329879E+01  1.8987766854E+01
>              3.1200000000E+00  1.2609329879E+01  1.8987766854E+01
>              9.3600000000E+00  1.2609329879E+01  1.8987766854E+01
>      xred    1.1111111111E-01  2.2222222222E-01  0.0000000000E+00
>              4.4444444444E-01  2.2222222222E-01  0.0000000000E+00
>              7.7777777778E-01  2.2222222222E-01  0.0000000000E+00
>              1.1111111111E-01  5.5555555556E-01  0.0000000000E+00
>              4.4444444444E-01  5.5555555556E-01  0.0000000000E+00
>              7.7777777778E-01  5.5555555556E-01  0.0000000000E+00
>              1.1111111111E-01  8.8888888889E-01  0.0000000000E+00
>              4.4444444444E-01  8.8888888889E-01  0.0000000000E+00
>              7.7777777778E-01  8.8888888889E-01  0.0000000000E+00
>              1.1111111111E-01  2.2222222222E-01  1.8813077341E-01
>              4.4444444444E-01  2.2222222222E-01  1.8813077341E-01
>              7.7777777778E-01  2.2222222222E-01  1.8813077341E-01
>              1.1111111111E-01  5.5555555556E-01  1.8813077341E-01
>              4.4444444444E-01  5.5555555556E-01  1.8813077341E-01
>              7.7777777778E-01  5.5555555556E-01  1.8813077341E-01
>              1.1111111111E-01  8.8888888889E-01  1.8813077341E-01
>              4.4444444444E-01  8.8888888889E-01  1.8813077341E-01
>              7.7777777778E-01  8.8888888889E-01  1.8813077341E-01
>              2.2222222222E-01  1.1111111111E-01  2.5000000000E-01
>              5.5555555556E-01  1.1111111111E-01  2.5000000000E-01
>              8.8888888889E-01  1.1111111111E-01  2.5000000000E-01
>              2.2222222222E-01  4.4444444444E-01  2.5000000000E-01
>              5.5555555556E-01  4.4444444444E-01  2.5000000000E-01
>              8.8888888889E-01  4.4444444444E-01  2.5000000000E-01
>              2.2222222222E-01  7.7777777778E-01  2.5000000000E-01
>              5.5555555556E-01  7.7777777778E-01  2.5000000000E-01
>              8.8888888889E-01  7.7777777778E-01  2.5000000000E-01
>              2.2222222222E-01  1.1111111111E-01  4.3813077341E-01
>              5.5555555556E-01  1.1111111111E-01  4.3813077341E-01
>              8.8888888889E-01  1.1111111111E-01  4.3813077341E-01
>              2.2222222222E-01  4.4444444444E-01  4.3813077341E-01
>              5.5555555556E-01  4.4444444444E-01  4.3813077341E-01
>              8.8888888889E-01  4.4444444444E-01  4.3813077341E-01
>              2.2222222222E-01  7.7777777778E-01  4.3813077341E-01
>              5.5555555556E-01  7.7777777778E-01  4.3813077341E-01
>              8.8888888889E-01  7.7777777778E-01  4.3813077341E-01
>              1.1111111111E-01  2.2222222222E-01  5.0000000000E-01
>              4.4444444444E-01  2.2222222222E-01  5.0000000000E-01
>              7.7777777778E-01  2.2222222222E-01  5.0000000000E-01
>              1.1111111111E-01  5.5555555556E-01  5.0000000000E-01
>              4.4444444444E-01  5.5555555556E-01  5.0000000000E-01
>              7.7777777778E-01  5.5555555556E-01  5.0000000000E-01
>              1.1111111111E-01  8.8888888889E-01  5.0000000000E-01
>              4.4444444444E-01  8.8888888889E-01  5.0000000000E-01
>              7.7777777778E-01  8.8888888889E-01  5.0000000000E-01
>              1.1111111111E-01  2.2222222222E-01  6.8813077341E-01
>              4.4444444444E-01  2.2222222222E-01  6.8813077341E-01
>              7.7777777778E-01  2.2222222222E-01  6.8813077341E-01
>              1.1111111111E-01  5.5555555556E-01  6.8813077341E-01
>              4.4444444444E-01  5.5555555556E-01  6.8813077341E-01
>              7.7777777778E-01  5.5555555556E-01  6.8813077341E-01
>              1.1111111111E-01  8.8888888889E-01  6.8813077341E-01
>              4.4444444444E-01  8.8888888889E-01  6.8813077341E-01
>              7.7777777778E-01  8.8888888889E-01  6.8813077341E-01
>              2.2222222222E-01  1.1111111111E-01  7.5000000000E-01
>              5.5555555556E-01  1.1111111111E-01  7.5000000000E-01
>              8.8888888889E-01  1.1111111111E-01  7.5000000000E-01
>              2.2222222222E-01  4.4444444444E-01  7.5000000000E-01
>              5.5555555556E-01  4.4444444444E-01  7.5000000000E-01
>              8.8888888889E-01  4.4444444444E-01  7.5000000000E-01
>              2.2222222222E-01  7.7777777778E-01  7.5000000000E-01
>              5.5555555556E-01  7.7777777778E-01  7.5000000000E-01
>              8.8888888889E-01  7.7777777778E-01  7.5000000000E-01
>              2.2222222222E-01  1.1111111111E-01  9.3813077341E-01
>              5.5555555556E-01  1.1111111111E-01  9.3813077341E-01
>              8.8888888889E-01  1.1111111111E-01  9.3813077341E-01
>              2.2222222222E-01  4.4444444444E-01  9.3813077341E-01
>              5.5555555556E-01  4.4444444444E-01  9.3813077341E-01
>              8.8888888889E-01  4.4444444444E-01  9.3813077341E-01
>              2.2222222222E-01  7.7777777778E-01  9.3813077341E-01
>              5.5555555556E-01  7.7777777778E-01  9.3813077341E-01
>              8.8888888889E-01  7.7777777778E-01  9.3813077341E-01
>     znucl     30.00000    8.00000
>
> ================================================================================
> -P-0000  leave_test : synchronization done...
>
>  chkinp: machine precision is   2.2204460492503131E-16
>
>  chkinp: Checking input parameters for consistency, jdtset= 1.
>
>  chkinp: Checking input parameters for consistency, jdtset= 2.
> -P-0000
> -P-0000
> ================================================================================
> -P-0000 == DATASET  1
> ==================================================================
> -P-0000
> dtsetcopy : copying area  algalch    the actual size (     2) of the index
> (     1)  differs from its standard size (     0)
> dtsetcopy : copying area  kberry     the actual size (    20) of the index
> (     2)  differs from its standard size (     1)
> dtsetcopy : copying area  nband      the actual size (     8) of the index
> (     1)  differs from its standard size (     1)
> dtsetcopy : copying area  mixalch    the actual size (     2) of the index
> (     1)  differs from its standard size (     0)
> dtsetcopy : copying area  mixalch    the actual size (     2) of the index
> (     2)  differs from its standard size (     0)
> dtsetcopy : copying area  occ_orig   the actual size (  3528) of the index
> (     1)  differs from its standard size (  2664)
> dtsetcopy : copying area  shiftk     the actual size (     8) of the index
> (     2)  differs from its standard size (     1)
>
>  getdim_nloc : deduce lmnmax  =  18, lnmax  =   6,
>                      lmnmaxso=  18, lnmaxso=   6.
>  Unit cell volume ucvol=  6.1426084E+03 bohr^3
>  Angles (23,13,12)=  9.00000000E+01  9.00000000E+01  1.20000000E+02 degrees
>
>  Coarse grid specifications (used for wave-functions):
>
>  getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  80  80  90
>         ecut(hartree)=     20.000   => boxcut(ratio)=   2.12278
>
>  Fine grid specifications (used for densities):
>
>  getcut: wavevector=  0.0000  0.0000  0.0000  ngfft= 108 108 120
>         ecut(hartree)=     40.000   => boxcut(ratio)=   2.02639
> -P-0000  leave_test : synchronization done...
> kpgio: loop on k-points done in parallel
> -P-0000  leave_test : synchronization done...
> - pspatm: opening atomic psp file    zn_ps.abinit.paw
>  zinc - PAW data extracted from US-psp (D.Vanderbilt) - generated by
> USpp2Abinit v2.3.0
>  30.00000  12.00000  20090106                znucl, zion, pspdat
>    7   11    2    0       602   0.00000      
> pspcod,pspxc,lmax,lloc,mmax,r2well
>  Pseudopotential format is: paw4
>  basis_size (lnmax)=  6 (lmn_size= 18), orbitals=   0   0   1   1   2   2
>  Spheres core radius: rc_sph= 2.01467224
>  5 radial meshes are used:
>  - mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 602 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 598 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 643 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 691 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  - mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size= 702 , AA= 0.82625E-04 BB=
> 0.16949E-01
>  Shapefunction is BESSEL type:
> shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
>  Radius for shape functions = sphere core radius
>  Radial grid used for partial waves is grid 1
>  Radial grid used for projectors is grid 2
>  Radial grid used for (t)core density is grid 3
>  Radial grid used for Vloc is grid 4
>  Radial grid used for pseudo valence density is grid 5
>  pspatm: atomic psp has been read  and splines computed
>
> - pspatm: opening atomic psp file    o_ps.abinit.paw
>  oxygen - PAW data extracted from US-psp (D.Vanderbilt) - generated by
> USpp2Abinit v2.3.0
>   8.00000   6.00000  20090106                znucl, zion, pspdat
>    7   11    1    0       489   0.00000      
> pspcod,pspxc,lmax,lloc,mmax,r2well
>  Pseudopotential format is: paw4
>  basis_size (lnmax)=  4 (lmn_size=  8), orbitals=   0   0   1   1
>  Spheres core radius: rc_sph= 1.11262345
>  5 radial meshes are used:
>  - mesh 1: r(i)=AA*[exp(BB*(i-1))-1], size= 489 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 2: r(i)=AA*[exp(BB*(i-1))-1], size= 485 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 3: r(i)=AA*[exp(BB*(i-1))-1], size= 506 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 4: r(i)=AA*[exp(BB*(i-1))-1], size= 613 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  - mesh 5: r(i)=AA*[exp(BB*(i-1))-1], size= 608 , AA= 0.30984E-03 BB=
> 0.16949E-01
>  Shapefunction is BESSEL type:
> shapef(r,l)=aa(1,l)*jl(q(1,l)*r)+aa(2,l)*jl(q(2,l)*r)
>  Radius for shape functions = sphere core radius
>  Radial grid used for partial waves is grid 1
>  Radial grid used for projectors is grid 2
>  Radial grid used for (t)core density is grid 3
>  Radial grid used for Vloc is grid 4
>  Radial grid used for pseudo valence density is grid 5
>  pspatm: atomic psp has been read  and splines computed
>
>   6.72705995E+05                                ecore*ucvol(ha*bohr**3)
> -P-0000  wfconv:   333 bands initialized randomly with npw= 26213, for
> ikpt=     1
> -P-0000  wfconv:   333 bands initialized randomly with npw= 26226, for
> ikpt=     2
> -P-0000  leave_test : synchronization done...
>  newkpt: loop on k-points done in parallel
>  pareigocc : MPI_ALLREDUCE
>
>  setup2: Arith. and geom. avg. npw (full set) are   26241.094   26241.091
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   1  of typat  1
>  gives tratom=  2.2222E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   37
>
>  This indicates that when symatm attempts to find atoms symmetrically
>  related to a given atom, the nearest candidate is further away than some
>  tolerance.  Should check atomic coordinates and symmetry group input data.
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   2  of typat  1
>  gives tratom=  2.2222E-01 -2.2222E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   43
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   3  of typat  1
>  gives tratom=  2.2222E-01 -5.5556E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   40
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   4  of typat  1
>  gives tratom=  5.5556E-01  4.4444E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   41
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   5  of typat  1
>  gives tratom=  5.5556E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   38
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   6  of typat  1
>  gives tratom=  5.5556E-01 -2.2222E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   44
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   7  of typat  1
>  gives tratom=  8.8889E-01  7.7778E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   45
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   8  of typat  1
>  gives tratom=  8.8889E-01  4.4444E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   42
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number   9  of typat  1
>  gives tratom=  8.8889E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   39
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  10  of typat  2
>  gives tratom=  2.2222E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   46
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  11  of typat  2
>  gives tratom=  2.2222E-01 -2.2222E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   52
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  12  of typat  2
>  gives tratom=  2.2222E-01 -5.5556E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   49
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  13  of typat  2
>  gives tratom=  5.5556E-01  4.4444E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   50
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  14  of typat  2
>  gives tratom=  5.5556E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   47
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  15  of typat  2
>  gives tratom=  5.5556E-01 -2.2222E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   53
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  16  of typat  2
>  gives tratom=  8.8889E-01  7.7778E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   54
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  17  of typat  2
>  gives tratom=  8.8889E-01  4.4444E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   51
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  18  of typat  2
>  gives tratom=  8.8889E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   48
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  19  of typat  1
>  gives tratom=  1.1111E-01 -1.1111E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   61
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  20  of typat  1
>  gives tratom=  1.1111E-01 -4.4444E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   58
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  21  of typat  1
>  gives tratom=  1.1111E-01 -7.7778E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   55
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  22  of typat  1
>  gives tratom=  4.4444E-01  2.2222E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   56
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  23  of typat  1
>  gives tratom=  4.4444E-01 -1.1111E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   62
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  24  of typat  1
>  gives tratom=  4.4444E-01 -4.4444E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   59
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  25  of typat  1
>  gives tratom=  7.7778E-01  5.5556E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   60
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  26  of typat  1
>  gives tratom=  7.7778E-01  2.2222E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   57
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  27  of typat  1
>  gives tratom=  7.7778E-01 -1.1111E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   63
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  28  of typat  2
>  gives tratom=  1.1111E-01 -1.1111E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   70
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  29  of typat  2
>  gives tratom=  1.1111E-01 -4.4444E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   67
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  30  of typat  2
>  gives tratom=  1.1111E-01 -7.7778E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   64
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  31  of typat  2
>  gives tratom=  4.4444E-01  2.2222E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   65
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  32  of typat  2
>  gives tratom=  4.4444E-01 -1.1111E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   71
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  33  of typat  2
>  gives tratom=  4.4444E-01 -4.4444E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   68
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  34  of typat  2
>  gives tratom=  7.7778E-01  5.5556E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   69
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  35  of typat  2
>  gives tratom=  7.7778E-01  2.2222E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   66
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  36  of typat  2
>  gives tratom=  7.7778E-01 -1.1111E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   72
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  37  of typat  1
>  gives tratom=  2.2222E-01  1.1111E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    1
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  38  of typat  1
>  gives tratom=  2.2222E-01 -2.2222E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    7
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  39  of typat  1
>  gives tratom=  2.2222E-01 -5.5556E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    4
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  40  of typat  1
>  gives tratom=  5.5556E-01  4.4444E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    5
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  41  of typat  1
>  gives tratom=  5.5556E-01  1.1111E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    2
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  42  of typat  1
>  gives tratom=  5.5556E-01 -2.2222E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    8
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  43  of typat  1
>  gives tratom=  8.8889E-01  7.7778E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    9
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  44  of typat  1
>  gives tratom=  8.8889E-01  4.4444E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    6
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  45  of typat  1
>  gives tratom=  8.8889E-01  1.1111E-01 -5.5511E-17.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -5.551E-17
>  for indsym(nearest atom)=    3
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  46  of typat  2
>  gives tratom=  2.2222E-01  1.1111E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   10
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  47  of typat  2
>  gives tratom=  2.2222E-01 -2.2222E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   16
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  48  of typat  2
>  gives tratom=  2.2222E-01 -5.5556E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   13
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  49  of typat  2
>  gives tratom=  5.5556E-01  4.4444E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   14
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  50  of typat  2
>  gives tratom=  5.5556E-01  1.1111E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   11
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  51  of typat  2
>  gives tratom=  5.5556E-01 -2.2222E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   17
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  52  of typat  2
>  gives tratom=  8.8889E-01  7.7778E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   18
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  53  of typat  2
>  gives tratom=  8.8889E-01  4.4444E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   15
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  54  of typat  2
>  gives tratom=  8.8889E-01  1.1111E-01  1.8813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01 -2.776E-17
>  for indsym(nearest atom)=   12
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  55  of typat  1
>  gives tratom=  1.1111E-01 -1.1111E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   25
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  56  of typat  1
>  gives tratom=  1.1111E-01 -4.4444E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   22
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  57  of typat  1
>  gives tratom=  1.1111E-01 -7.7778E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   19
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  58  of typat  1
>  gives tratom=  4.4444E-01  2.2222E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   20
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  59  of typat  1
>  gives tratom=  4.4444E-01 -1.1111E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   26
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  60  of typat  1
>  gives tratom=  4.4444E-01 -4.4444E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   23
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  61  of typat  1
>  gives tratom=  7.7778E-01  5.5556E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   24
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  62  of typat  1
>  gives tratom=  7.7778E-01  2.2222E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   21
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  63  of typat  1
>  gives tratom=  7.7778E-01 -1.1111E-01  2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  2.776E-17
>  for indsym(nearest atom)=   27
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  64  of typat  2
>  gives tratom=  1.1111E-01 -1.1111E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   34
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  65  of typat  2
>  gives tratom=  1.1111E-01 -4.4444E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   31
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  66  of typat  2
>  gives tratom=  1.1111E-01 -7.7778E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   28
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  67  of typat  2
>  gives tratom=  4.4444E-01  2.2222E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   29
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  68  of typat  2
>  gives tratom=  4.4444E-01 -1.1111E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   35
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  69  of typat  2
>  gives tratom=  4.4444E-01 -4.4444E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   32
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  70  of typat  2
>  gives tratom=  7.7778E-01  5.5556E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   33
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  71  of typat  2
>  gives tratom=  7.7778E-01  2.2222E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   30
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  2 to atom number  72  of typat  2
>  gives tratom=  7.7778E-01 -1.1111E-01  4.3813E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0 -1  0
>                                  1  1  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   36
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   1  of typat  1
>  gives tratom=  2.2222E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   37
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   2  of typat  1
>  gives tratom=  2.2222E-01  4.4444E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   40
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   3  of typat  1
>  gives tratom=  2.2222E-01  7.7778E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   43
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   4  of typat  1
>  gives tratom=  5.5556E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   38
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   5  of typat  1
>  gives tratom=  5.5556E-01  4.4444E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   41
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   6  of typat  1
>  gives tratom=  5.5556E-01  7.7778E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   44
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   7  of typat  1
>  gives tratom=  8.8889E-01  1.1111E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   39
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   8  of typat  1
>  gives tratom=  8.8889E-01  4.4444E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   42
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number   9  of typat  1
>  gives tratom=  8.8889E-01  7.7778E-01 -5.0000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   45
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  10  of typat  2
>  gives tratom=  2.2222E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   46
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  11  of typat  2
>  gives tratom=  2.2222E-01  4.4444E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   49
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  12  of typat  2
>  gives tratom=  2.2222E-01  7.7778E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   52
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  13  of typat  2
>  gives tratom=  5.5556E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   47
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  14  of typat  2
>  gives tratom=  5.5556E-01  4.4444E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   50
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  15  of typat  2
>  gives tratom=  5.5556E-01  7.7778E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   53
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  16  of typat  2
>  gives tratom=  8.8889E-01  1.1111E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   48
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  17  of typat  2
>  gives tratom=  8.8889E-01  4.4444E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   51
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  18  of typat  2
>  gives tratom=  8.8889E-01  7.7778E-01 -3.1187E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by  1.111E-01 -1.111E-01  0.000E+00
>  for indsym(nearest atom)=   54
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  19  of typat  1
>  gives tratom=  1.1111E-01  2.2222E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   55
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  20  of typat  1
>  gives tratom=  1.1111E-01  5.5556E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   58
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  21  of typat  1
>  gives tratom=  1.1111E-01  8.8889E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   61
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  22  of typat  1
>  gives tratom=  4.4444E-01  2.2222E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   56
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  23  of typat  1
>  gives tratom=  4.4444E-01  5.5556E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   59
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  24  of typat  1
>  gives tratom=  4.4444E-01  8.8889E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   62
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  25  of typat  1
>  gives tratom=  7.7778E-01  2.2222E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   57
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  26  of typat  1
>  gives tratom=  7.7778E-01  5.5556E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   60
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  27  of typat  1
>  gives tratom=  7.7778E-01  8.8889E-01 -2.5000E-01.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   63
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  28  of typat  2
>  gives tratom=  1.1111E-01  2.2222E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   64
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  29  of typat  2
>  gives tratom=  1.1111E-01  5.5556E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   67
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  30  of typat  2
>  gives tratom=  1.1111E-01  8.8889E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.000E+00
>  for indsym(nearest atom)=   70
>
>  symatm : WARNING -
>  Trouble finding symmetrically equivalent atoms
>  Applying inv of symm number  3 to atom number  31  of typat  2
>  gives tratom=  4.4444E-01  2.2222E-01 -6.1869E-02.
>  This is further away from every atom in crystal than the allowed tolerance.
>  The inverse symmetry matrix is  0  1  0
>                                  1  0  0
>                                  0  0  1
>  and the nonsymmorphic transl. tnons =    0.0000000    0.0000000    
> 0.5000000
>  The nearest coordinate differs by -1.111E-01  1.111E-01  0.0
>



--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Prof. Matthieu Verstraete

Universite de Liège
Institut de Physique, Bat. B5
Allée du 6 aout, 17
B- 4000 Sart Tilman, Liège
Belgium

Phone : +32 4 366 37 50
Fax : +32 4 366 36 29

Mail : matthieu.jean.verstraete@gmail.com



Archive powered by MHonArc 2.6.16.

Top of Page